Home
Class 11
MATHS
If f(x)=sin(sinx) an f f'(x) +tan xf'(x)...

If `f(x)=sin(sinx) an f f'(x) +tan xf'(x)+g(x)=0`, then g(x) is :

A

`cos^(2)x cos(sinx)`

B

`sin^(2)x cos(cosx)`

C

`sin^(2)x sin (cosx)`

D

`cos^(2) x sin (sinx)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =x and g(x) =|x| , then f(x) + g(x) is equal to

Let f(x+y)=f(x)f(y) and f(x) = 1 + (sin2x) g(x) where g(x) is continuous . Then f^(1) (x) equals

phi(x) = f(x)g(x) and f'(x)g'(x) = k , then (2k)/(f(x)g(x)) =

If f(x)=x^(3)-x, g(x)=sin 2x , then

If g(f(x))= |sinx | and f(g(x))=(sin sqrt(x))^(2) , then

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x) is a function such that f^('')(x) + f(x) = 0 and g(x) = (f(x))^2 + (f'(x))^2 and g(3) = 3 then g(8) =