Home
Class 11
MATHS
Minimum value of (Sinx)^(Sinx) is...

Minimum value of `(Sinx)^(Sinx)` is

A

1

B

`(1)/(e)`

C

`e^(-(1)/(e))`

D

`e^((1)/(e))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 7/(4sinx+3cosx-6) is

The minimum value of Sinx ((1-cos x)/(sin x) + (sin x)/( 1-cos x)) is

Find the maximum and minimum value of f(x) = 5sinx + 12cos x -13 .

If y = (sinx + cosecx)^(2) + (cos x + sec x)^(2) .then the minimum value of y,AA x in R is

Find the maximum and minimum value of f(x)=3cosx+4sinx

Assertion (A) : The least value of sinx+(1)/(sinx) is 2 if x gt 0 Reason (R) : Least value of x+1//x is 2 if x gt 0 then correct statement is

If sinx-cosx=-sqrt(2) the principal value of (x-(pi)/(4)) is

(sinx)/(sinx//8) =

If f(x)=|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1):}|," then the value of "int_(0)^(pi//2)f(x)dx is