Home
Class 11
MATHS
If f(x)={{:(|x|,"if", 0 lt |x| le2),(1,"...

If `f(x)={{:(|x|,"if", 0 lt |x| le2),(1,"if", x=0):}` then at x=0 has

A

local maximum

B

local minimum

C

no extreme value

D

not determined

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f: R to R defined by f(x) ={{:(2x+5, if, x gt 0),(3x-2, if, x le 0):} then f is

If f(x)={{:(2x+3"if", x le0),(3(x+1)"if",x gt theta):} Find left and right hand limits and choose whether f(x) has limit at the point x=0 .

if f(x)={{:(x^(2), if x le),(x, if1 lt x le2),(x-3,if x gt2):} Find the left and right hand limits and check wheather f(x) has limit at the point x=1:2

Show that f(x)={{:(x^(2),if, 0 le x le 1),(x ,if, 1 le x le 2):} is continuous on [0,2]

Suppose f:[-2, 2] rarr RR is defined by f(x)={{:(-1" for "-2 le x le 0),(x-1" for "0le xle 2):} , then {x in [-2, 2]: x le 0 and f(|x|)=x}=

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=

If f: [0,3] to [0,3] is defined by: f(x) = {{:(1+x,0 le x le 2),(3-x, 2 lt x le 3):} , then show that f[0,3] sube [0,3] and find fof.

Let g(x) =1+x-[x] and f(x) ={{:(-1, if, x lt 0),(0, if, x=0),(1, if, x gt 0):} , then (f(g(2009)))/(g(f(2009)) =