Home
Class 11
MATHS
If f(x)= overset(n) underset(i=1) sum (x...

If `f(x)= overset(n) underset(i=1) sum (x-a_(i))^(2)` has a minimum at `x=x_(0)` then for `a_(1),.....a_(n),x_(0)` is the

A

geometric mean

B

harmonic mean

C

arithemetic mean

D

A.G.M

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=overset(n)underset(i=1)sum(x-x_i)^2,x_i are constants, then y has minimum value at x=

underset(n=1)overset(oo)sum(x^(n))/(n+2)=

If ( 1 + x ) ^(n) = a_(0) + a _(1) x + a_(2) x^(2) + ………. + a_(n)x^(n) , then show that (i) a_(0) - a_(2) + a_(4) - a_(6) + ……… = 2^(n//2) cos . (npi)/4 (ii) a _(1) - a_(3) + a_(5) - a_(7) + …….. = 2^(n//2) sin . (npi)/4

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)(f(x) .

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

If (a_(0))/(n+1) + ( a_(1))/( n ) + ( a_(2))/( n -1)+"......"+ (a_(n-1))/(2) + a_(n) =0 then a_(0)x^(n) + a_(1) x^(n-1) + "..........." + a_(n-1)x + a_(n) =0 has

Suppose A_(1),A_(2),…,A_(30) are 30 sets each with 5 elements and B_(1),B_(2),…,B_(n) are n sets each with 3 elements. Let underset(i=1)overset(30)uu A_(i)=underset(j=1)overset(n)uu B_(j) Assume that each element of S belongs to exactly ten A_(i) ' s and to exactly nine of the B_(j) 's then n =

The value of underset(x to 0)"Lt" ((a_(1)^(1//x)+a_(2)^(1//x)+.....+a_(n)^(1//x))/(n))^(nx)) is