Home
Class 11
MATHS
The maximum value of y=tan^(-1)((1-x)/(1...

The maximum value of `y=tan^(-1)((1-x)/(1+x))` on [0,1] is

A

`(pi)/(2)`

B

`(2)/(pi)`

C

`(4)/(pi)`

D

`(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= tan^(-1)sqrt((1-x)/(1+x)) then dy/dx at

The smallest and the largest values of tan^(-1)((1-x)/(1+x)),0lexle1 are

The maximum value of y= (1)/( sin^(6) x + cos^(6) x) is __________

A : The maximum value of f(x)=Sin^(-1)x+Cos^(-1)x-Tan^(-1)x" is "3pi//4 R : Sin^(-1)x+Cos^(-1)x=pi//2AAx inR

The value of 2tan^(-1)(cosec(tan^(-1)x)-tan(cot^(-1)x)) is equal to

Assertion (A) : The value of "tan"^(-1)+"tan"^(-1)3=(3pi)/(4) Reason (R) : If x gt 0, y gt , 0, xy gt 1 then tan^(-1)x+tan^(-1)y=pi +tan^(-1)((x+y)/(1-xy))