Home
Class 11
MATHS
Show that f(x) = ax^(2) + bx + c (a ne0)...

Show that `f(x) = ax^(2) + bx + c (a ne0)` is maximum at `x = -(b)/(2a)` when `a lt 0` and minimum at `x = -(b)/(2a)` when `a gt 0`. Also find the maximum and minimum values of f(x).

Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise Examples|3 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise Advanced Analytical Solved Examples|20 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos

Similar Questions

Explore conceptually related problems

Find the minimum and maximum values of sin2x-cos2x

f(x) = ( x^(2))/(|x|) , x ne 0 f (0) = 0 at x = 0 , f is

Show that (x)/(1+x^(2)) lt tan^(-1) x lt x when x gt 0 .

IF a gt0 then the minimum value of 3x^2+4x+1 is…….

If f (x) = ax ^(2) + bx + c then find Lt _(x to 5) (f (x) - f (5))/(x-5)

Find the absolute maximum and absolute minimum values of f(x)=x^(40)-x^(20)" on "[0,1]