Home
Class 11
MATHS
Show that f(x) = sin^(m)x. cos^(n)x has ...

Show that `f(x) = sin^(m)x. cos^(n)x` has maximum value at `x = Tan^(-1) sqrt((m)/(n)) (m, n gt 0)`.

Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise Examples|3 Videos
  • MAXIMA AND MINIMA

    AAKASH SERIES|Exercise Advanced Analytical Solved Examples|20 Videos
  • MAXIMA & MINIMA

    AAKASH SERIES|Exercise EXERCISE-III|35 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos

Similar Questions

Explore conceptually related problems

f(x) = sin ^m x cos ^nx has maximum value at x=

f(x) = sin x(1+ cos x) has maximum value at x=

Find the derivative of y=sin^(m)x.cos^(n)x.

If I_(m.n) = int sin^(m) x cos^(n) xdx then I_(5,4) =

Show that If I _(n) =int cos ^(n) x dx, then show that I_(n) =1/n cos ^(n-1) x sin x + (n-1)/(n ) I_(n-2).

Tan^(-1)(m/n)-Tan^(-1)((m-n)/(m+n))=

A function f is defined by f(x)=|x|^(m)|x-1|^(n)AAx inR . The local maximum value of the function is , (m,ninN)