Home
Class 11
MATHS
If sec theta + tan theta=1, then root of...

If `sec theta + tan theta=1`, then root of the equation `(a-2b+c)x^(2) + (b-2c+a)x + (c-2a+b)=0` is:

A

`sec theta`

B

`tan theta`

C

`sin theta`

D

`cot theta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation ( a-b) x^2 +(b-c) x+ (c-a) =0 are

The roots of the equation (b-c) x^2 +(c-a)x+(a-b)=0 are

The roots of the equation a ( b-c) x^2 -b(c-a) x+c(a-b)=0 are

If a sec theta + b tan theta = c then (a tan theta + b sec theta)^(2)=

If asec theta + b tan theta = c then ( theta + bsec theta)^(2) =

If i sin theta and -cos theta are the roots of the equation ax^(2)-bx-c=0 where a,b, and c are the sides of a triangle ABC, then cosB is equal to

A root of the equation (a+c)/(x+a)+(b+c)/(x+b)=(2(a+b+c))/(x+a+b) is

a sec theta + b tan theta = 1, sec theta - b tan theta = 5 rArr a^(2)(b^(2) + 4) =