Home
Class 11
MATHS
If theta is eliminated from the equation...

If `theta` is eliminated from the equations `x=a cos(theta-alpha)` and `y=b cos(theta-beta)`, then `x^(2)/a^(2) + y^(2)/b^(2) -(2xy)/(ab) cos(alpha-beta)` is equal to:

A

`sec^(2)(alpha - beta)`

B

`"cosec"^(2)(alpha - beta)`

C

`cos^(2)(-beta)`

D

`sin^(2)(alpha - beta)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(theta - alpha)=a, cos(theta-beta)=b , then sin^(2)(alpha -beta) + 2abcos(alpha-beta)=0

If x= cot theta + cos theta , y= cot theta - cos theta , " then " (x^(2)-y^(2))^(2)=

(ii) Eliminate 'theta' from the equations x= tan theta + cot theta, y = sec theta - cos theta

If sin (theta + alpha) = a and sin (theta + beta) = b,"then" cos 2 (alpha - beta) - 4ab cos (alpha - beta) =

If x= a cos^(2) theta sin theta and y= a sin^(2) theta cos theta , " then " ((x^(2)+y^(2))^(3))/(x^(2)y^(2))=

If a* cos ( theta + alpha ) = b cos ( theta - alpha ) , " then " ( a+ b) tan theta =

Eliminating theta from the following (i) x = a cos^(3) theta " " y = b sin^(3) theta

If x = a Sin 2 theta (1+Cos2 theta) , y = b Cos2 theta (1-Cos2 theta) , then (dy)/(dx) =

If alpha+beta+gamma=2 theta then cos theta+cos(theta-alpha)+cos (theta-beta)+cos(theta-gamma)=