Home
Class 11
MATHS
If tan alpha = 1/sqrt(x(x^(2)+x+1)), tan...

If `tan alpha = 1/sqrt(x(x^(2)+x+1)), tan beta = sqrt(x)/sqrt(x^(2) +x+1)` and `tan gamma = sqrt(x^(-3) + x^(-2) + x^(-1))`, then `alpha + beta=`

A

`gamma`

B

`2gamma`

C

`-gamma`

D

`gamma//2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

int (x tan^(-1)x)/(sqrt(1 + x^(2))) d x=

tan^(-1)(x+sqrt(1+x^(2)))=

If "tan"^(-1)(sqrt(1+x^(2))-1)/x=4^(@) then

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

If tan ( alpha + beta) = sqrt(3), tan ( alpha - beta ) =1 then tan 6 beta =

If alpha , beta , gamma are the roots of 2x^3 -2x -1=0 the sum ( alpha beta)^2 =

If (sqrt(1 +x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))=3 then x=