Home
Class 11
MATHS
If cos(alpha - beta) + cos(beta - gamma)...

If `cos(alpha - beta) + cos(beta - gamma)+ cos(gamma-alpha)=-3/2`, then

A

`sum cos alpha =0`

B

`sum sin alpha=0`

C

`sum(cos alpha + sin alpha)=0`

D

`sum cos alpha sin alpha=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then show that cos ( alpha + beta) + cos ( beta + gamma) + cos ( gamma + alpha) = 0

If a=cisalpha,b=cisbeta,c=cisgamma , and a/b+b/c+c/a-1=0 then cos(alpha-beta)+cos(beta-gamma) + cos(gamma-alpha) =

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then match the following. {:("I) "cos3alpha+cos3beta+cos3gamma=,"a) "0),("II) "sin2alpha+sin2beta+sin2gamma=,"b) "3),("III) "cos^2alpha+cos^2beta+cos^2gamma=,"c) "3//2),("IV) "cos(2alpha-beta-gamma)+cos(2beta-gamma-alpha)+cos(2gamma-alpha-beta)=,"d) "3cos(alpha+beta+gamma)):}

Let A and B denote the statements A: cos alpha + cos beta + cos gamma=0, B:sin alpha + sin beta + sin gamma=0 , If cos(beta - gamma) + cos(gamma - alpha) + cos(alpha - beta)=-3/2 , then

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma then cos(2alpha-beta-gamma)+cos(2beta-gamma-alpha)+cos(2gamma-alpha-beta)=

If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :

cos (alpha + beta + gamma ) + cos (alpha - beta - gamma) + cos ( beta - gamma - alpha ) + cos ( gamma - alpha - beta )=

Prove that cos alpha+cos beta+cos gamma+cos (alpha+beta+gamma) =4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)