Home
Class 11
MATHS
If tan(x+pi/4)=a, then sec^(2)x=...

If `tan(x+pi/4)=a`, then `sec^(2)x`=

A

`1+a^(2)`

B

`(4a)/(a+1)^(2)`

C

`(2(a^(2)+1))/(a+1)^(2)`

D

`((a-1)/(a+1))^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let 0lt x lt pi//4 , then (sec2x-tan2x) equals

If tan^(-1)""(a+x)/a+tan^(-1)""(a-x)/a=pi/6 , then x^(2)=

If Tan^(-1)2x+Tan^(-1)3x=pi//4 , then x =

If x=a(sec theta + tan theta)^(2) and y=b(sec theta- tan theta)^(4) , then x^(4)y^(2)=

If the equation cos^(2)((pi)/4(sinx+sqrt(2)cos^(2)x))-tan^(2)(x+(pi)/4tan^(2)x)=1 then x=

If tan((pi)/(4)+(y)/(2))=tan^(3)((pi)/(4)+(x)/(2)) then (3+sin^(2)x)/(1+3sin^(2)x)=