Home
Class 11
MATHS
In any triangle ABC, sin^(2)A-sin^(2)B+s...

In any triangle ABC, `sin^(2)A-sin^(2)B+sin^(2)C` is always equal to

A

2sinAsinB cosC

B

2sinA cos B sinC

C

2sinA cos B cosC

D

2sin A sin B sinC

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

In a right angled Delta ABC, sin^2 A+ sin^2 B+sin^2 C =

In a Delta ABC, sin ^(4) A + sin ^(4) B + sin ^(4) C =

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

In Delta ABC , pi((sin ^(2) A +sin A+1)/( sin A)) is always greater than

In Delta ABC , if sin ^(2)A +sin ^(2) B +sin ^(2) C =(3)/(4) , then the triangles is

In Delta ABC, if sin^2 A+sin^2 B=sin^2 C , then C=

If in a triangle ABC, 4 sin A= 4 sin B=3 sin C , the cos C=

In Delta ABC, R^2 (sin 2A+ sin 2B+ sin 2C)=