Home
Class 11
MATHS
Let f(theta) =(cot theta)/(1+ cot theta)...

Let `f(theta) =(cot theta)/(1+ cot theta)` and `alpha + beta=(5pi)/4`, then the value of `f(alpha)f(beta)` is:

A

`1/2`

B

`-1/2`

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : If f(theta)=(cot theta)/(1+cot theta) and alpha+ beta=(5pi)/(4) then f(alpha) f(beta)=(1)/(2) Statement-II : If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then tan alpha= tan beta+ 2tan gamm Statement-III sin^(2) alpha+ cos^(2) (alpha+ beta)+2 sin alpha beta cos (alpha+beta) is independent of alpha only

(1+cosec theta - cot theta)/(1+cosec theta + cot theta)=

If f(theta) = sin(tan^(-1)(("sin theta)/(sqrt(cos 2 theta)))) , where -pi/4 lt theta lt pi/4 , then the value of d/(d(tan theta)) f(theta) is

If cos theta = (cos alpha - cos beta)/(1-cos alpha cos beta) , then one of the values of tan((theta)/(2)) is

Let alpha , beta be such that pi lt alpha - beta lt 3 pi . If sin alpha + sin beta =-(21)/(65) and cos alpha + cos beta =-(27)/(65) , then the value of cos""(alpha - beta )/(2) is

Let f:(-1,1) rarr R be such that f(cos 4 theta) = (2)/(2-sec^(2) theta) for theta in (0, pi/4) uu (pi/4, pi/2) . Then the value of f(1/3) is (are)

Let alpha, beta be such that pi lt alpha- beta lt 3pi . If sin alpha+ Sin beta=(-21)/(65) and cos alpha+ Cos beta=(-27)/(65) then the value of "cos" (alpha- beta)/(2) is

If alpha, beta are different values of theta satisfying the equation 5 cos theta + 12 sin theta = 11 then the value of sin (alpha + beta)=