Home
Class 11
MATHS
Let alpha, beta and gamma be some angle...

Let `alpha, beta` and `gamma` be some angles in the first quadrant satisfying `tan(alpha + beta)=15//8` and `"cosec" gamma = 17//8`, then which of the following hold(s) good ?

A

`alpha + beta + gamma=pi`

B

`cot alpha cot beta cotgamma = cot alpha + cotbeta + cot gamma`

C

`tan alpha + tan beta + tan gamma = tan alpha tan beta tan gamma`

D

`tan alpha tan beta + tan beta tangamma + tan gamma tan alpha =1`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are angles in the first quadrant sucn than tan alpha = 1/7 and sin beta = (1)/(sqrt10) , then alpha + 2 beta =

IF alpha+beta=pi/2 and gamma+beta=alpha then find tan alpha .

cos alpha * sin (beta - gamma ) + cos beta * sin ( gamma - alpha ) + cos gamma * sin ( alpha - beta )=

If alpha,beta, gamma are any three angles , then cos alpha + cos beta - cos gamma - cos (alpha+beta+gamma)=

Let alpha, beta, gamma satisfy 0 lt alpha lt beta lt gamma lt 2pi and cos(x+alpha) + cos(x + beta) + cos(x + gamma) =0 for all x in R observe the following statements. Statements-I: gamma - alpha =(2pi)/3 Statement-2: cos alpha + cos beta + cos gamma=0 and sin alpha + sin beta + sin gamma=0

Let alpha,beta and gamma be such that 0 lt alpha lt beta lt gamma lt 2pi for any x in R if cos (x+alpha)+cos(x + beta)+cos(x+gamma)=0 then tan(gamma-alpha) =

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha, beta, gamma are acute angles and cos theta = sin beta//sin alpha, cos phi = sin gamma//sin alpha and cos(theta-phi)=sin beta sin gamma then the value of of tan^(2)alpha - tan^(2)beta- tan^(2)gamma is equal to