Home
Class 11
MATHS
If tantheta = ntan phi then the maximum...

If `tantheta = ntan phi` then the maximum value of `tan^(2)(theta - phi)` is equal to

A

`(n+1)^(2)/(4n)`

B

`(n-1)^(2)/(4n)`

C

`(n+1)^(2)/(2n)`

D

`(n-1)^(2)/(2n)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta = n tan phi then the maximum value of tan^(2)(theta-phi) is equal to

If tan x = n tan y, nin R ' then the maximum value of sec^(2)(x-y) is equal to

If tan theta = (1)/(2) and tan phi = (1)/(3) , then the value of theta + phi is

IF tan^2 theta=2 tan^2 phi +1 then find the value of cos 2 theta+sin^2 phi .

If (1+tantheta)(1+tanphi)=2 then theta+phi =

If 2sec2theta = tan phi + cot phi , then one of the values of theta + phi is:

If tan theta = 3//4 , then the value of tan 2 theta + sec 2 theta is

If sintheta=costheta then the value of 2tantheta+cos^2theta is

If tan theta + cot theta = 2, find the value of tan^2 theta + cot^2 theta .