Home
Class 11
MATHS
The sum of the series, sin theta sec(3th...

The sum of the series, `sin theta sec(3theta)+sin 3theta sec(3^(2)theta)+sin(3^(2)theta)sec(3^(3)theta)+…….` upto n terms, is

A

`1/2[tan3^(n)theta - tan3^(n-1)theta]`

B

`[tan3^(n)theta - tan theta]`

C

`1/2[tan3^(n)theta - tan theta]`

D

`1/2(tan3^(n)theta-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

4 sin 5 theta cos 3 theta sin 2 theta

|(4 sin^(2)theta, cos^(2) theta),(3 sec^(2)theta,cosec^(2)theta)|=

sin 3 theta * cos^(3) theta + cos 3 theta * sin^(3) theta =

sec^(4) theta (1-sin^4 theta ) - tan^(2) theta =

( cos 3 theta - sin 3 theta )/( cos theta+ sin theta ) =

2 cos theta - cos 3 theta - cos 5 theta - 16 cos^(3) theta sin^(2) theta =

Let f(theta) = sin theta (sin theta + sin 3 theta). "Then" f(theta) is

cot^(2) theta ((sec theta -1)/(1+ sin theta ))+ sec^(2) theta ((sin theta -1)/( 1+ sec theta )) =

(sin^(3)theta+sin3theta)/(cos^(3)theta-cos3theta)