Home
Class 11
MATHS
The value of sum(k=1)^(100) sin(kx) cos(...

The value of `sum_(k=1)^(100) sin(kx) cos(101-k)x` is equal to:

A

`101/2 sin(101 x)`

B

`99 sin(101x)`

C

`50 sin (101x)`

D

`100 sin(101 x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(k=1)^(10){sin((2kpi)/(11))-i cos ((2kpi)/(11))}

If int_(0)^(10)f(x)dx=5 , then sum_(K=1)^(10) int_(0)^(1) f(K-1+x)dx is equal to

sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1, is equal to

""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r) is equal to :

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n k

For any integer n ge 1 , then sum_(k=1)^(n) k ( k+2) is equal to

The value of cot(sum_(n=1)^(23)cot^(-1)(1+sum_(k=1)^(n)2k)) is

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n 1