Home
Class 11
MATHS
Let a^(2) + b^(2) = alpha^(2) + beta^(2)...

Let `a^(2) + b^(2) = alpha^(2) + beta^(2) = 2` then show that the maximum value of `S= ( 1-a) ( 1-b) + (1-alpha) (1- beta)`is

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Topper's Solved these Questions

  • PERIODICITY AND EXTEME VALUES

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE) LEVEL-I(MAIN) (Extreme values) Statement type questions|3 Videos
  • PERIODICITY AND EXTEME VALUES

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE) LEVEL-I(MAIN) Periodicity (Single answer type questions)|17 Videos
  • PERIODICITY AND EXTEME VALUES

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE) LEVEL-I(MAIN) (Extreme values) Matrix matching type questions|2 Videos
  • PAIR OF STRAIGHT LINES

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTIONS|15 Videos
  • PERIODICITY AND EXTREME VALUES

    AAKASH SERIES|Exercise Practice Sheet (Exericise-I) Level-II (Straight Objective Type Questions)|31 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the zeros of the polynomial f(x) = ax^(2) + bx + c then 1/(alpha^2) + 1/(beta^2) = …………….

If alpha and beta are the roots of the quadratic equation x^(2) - 3x + 1 = 0 "then" 1/alpha^(2) + 1/beta^(2)

IF alpha and beta are the roots of 2x^2 + x + 3=0 , then the equation whose roots are ( 1- alpha ) /( 1 + alpha ) and ( 1- beta ) /( 1 + beta ) is

If alpha, beta are the roots of x^(2)+2x+5=0 , then the equation whose roots are (alpha+1)/(alpha), (beta+1)/(beta) is