Home
Class 12
MATHS
Solve: 16^sin^(2x)16^cos^(2x)=10 ,0lt=x<...

Solve: `16^sin^(2x)16^cos^(2x)=10 ,0lt=x<2pi`

Promotional Banner

Topper's Solved these Questions

  • Ellipse and Hyberbola

    A DAS GUPTA|Exercise EXERCISE|65 Videos
  • Function

    A DAS GUPTA|Exercise Exercise|57 Videos

Similar Questions

Explore conceptually related problems

Solve: 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<2 pi

No of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<=2 pi is

Total number of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10" in "[0,2pi] are

Solve 16x^(2)+4=0

solve 16x^(2)+17x+5

Total number of solution of 16^(cos^(2)x)+16^(sin^(2)x)=10 in x in[0,3 pi] is equal to (A)4(B)8(C)12(D)16

If 0 <= x <= pi, then the solution of the equation 16^(sin^2) x + 16 ^(cos^2) x = 10 is given by x equal to (i) pi/6,pi/3 (ii) pi/3,pi/2 (iii) pi/6,pi/2 (iv) none of these

Solve for x:5^(2x)-16.5^(x)-225=0