Home
Class 12
MATHS
Solve x+log10(2^x+1)= log10 6+xlog10 5....

Solve `x+log_10(2^x+1)= log_10 6+xlog_10 5`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Ellipse and Hyberbola

    A DAS GUPTA|Exercise EXERCISE|65 Videos
  • Function

    A DAS GUPTA|Exercise Exercise|57 Videos

Similar Questions

Explore conceptually related problems

solve log_(10)(x+5)=1

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

Solve for x. log_(0.1) sin 2x +log_10 cos x = log_10 7 .

The number of positive integers satisfying x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6 is...........

Given that log_10 2 =x, log_10 3 =y then log_10 1.2=

log_(10){log10x}=1 then x

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is