Home
Class 12
MATHS
Let f:[0,(pi)/(2)]toR be continuous and ...

Let `f:[0,(pi)/(2)]toR` be continuous and satisfy `f'(x)=(1)/(1+cosx)` for all `x in(0,(pi)/(2))`. If f(0)=3 then `f((pi)/(2))` has the value equal to :

Promotional Banner

Topper's Solved these Questions

  • Properties and Application of definite Integrals

    A DAS GUPTA|Exercise EXERCISE|62 Videos
  • Progression, Related Inequalities and Series

    A DAS GUPTA|Exercise Exercise|235 Videos
  • Recap of Facts and Formulae

    A DAS GUPTA|Exercise Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=f(tanx)+f(cotx),AAx in ((pi)/(2),pi). If f''(x)lt0,AAx in ((pi)/(2),pi), then

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

If f(x) = (tan(pi/4-x))/(cot2x), x != pi/4 , is continuous in (0, pi/2) , then f((pi)/(4)) is equal to

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x=pi/2 , where f(x)=(cos x )/(sqrt(1-sinx)) , for x!= pi/2 , then f(pi/2)=

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

Let f(x)={[sin(pi x)/(2),0 =1] ,then check continuity at x=1

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

Let f'(x)=3x^(2)sin((1)/(x))-x cos((1)/(x)), if x!=0,f(0)=0 and f((1)/(pi))=0 then