Home
Class 12
MATHS
Define a binary operation * on the set A...

Define a binary operation * on the set `A={0,1,2,3,4,5}` given by `a*b=a b` (mod 6). Show that 1 is the identity for *. 1 and 5 are the only invertible elements with `1^(-1)=1` and `5^(-1)=5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Define a binary operation * on the set A={0,1,2,3,4,5} given by a*b=ab(mod 6).Show that 1 is the identity for *.1 and 5 are the only invertible elements with 1^(-1)=1 and 5^(-1)=5

Define a binary operation * on the set A = {0,1,2,3,4,5}, given by a * b = (ab) mod 6, show that for *,1 and 5 are only invertible elements with 1^-1 = 1 and 5^-1 = 5

Define a binary operation * on the set A={1,2,3,4} as a^(*)b=ab(mod5). Show that 1 is the identity for * and all elements of the set A are invertible with 2^(-1)=3 and 4^(-1)=4

Define a binary operation ** on the set A={1,\ 2,\ 3,4} as a**b=a b\ (mod\ 5) . Show that 1 is the identity for ** and all elements of the set A are invertible with 2^(-1)=3 and 4^(-1)=4.

Define a binary operation * on the set A={1,2,3,4} as a*b=ab(mod5) show that 1 is the identity for * and all elements of the set A are invertible with 2^(-1)=3 and 4^(-1)=4

Define a binary operation * on the set A={0,1,2,3,4,5} as a*b=a+b( mod 6). Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of a.

Define a binary operation * on the set A={0,\ 1,\ 2,\ 3,\ 4,\ 5} as a * b=a+b(mod 6) Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of adot

Define a binary operation * on the set A={0,1,2,3,4,5} as a*b=a+b (mod 6). Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of adot OR A binary operation * on the set {0,1,2,3,4,5} is defined as a*b={a+b ,ifa+b<6a+b-6,ifa+bgeq6 Show that zero is the identity for this operation and each element a of set is invertible with 6-a , being the inverse of a.

Define a binary operation * on the set A={0,1,2,3,4,5} as a*b=a+b (mod 6). Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of adot OR A binary operation * on the set {0,1,2,3,4,5} is defined as a*b={a+b ,ifa+b<6a+b-6,ifa+bgeq6 Show that zero is the identity for this operation and each element a of set is invertible with 6-a , being the inverse of a.

Define a binary operation ** on the set A={0,1,2,3,4,5} as a**b=(a+b) \ (mod 6) . Show that zero is the identity for this operation and each element a of the set is invertible with 6-a being the inverse of a . OR A binary operation ** on the set {0,1,2,3,4,5} is defined as a**b={[a+b if a+b = 6]} Show that zero is the identity for this operation and each element a of the set is invertible with 6-a , being the inverse of a .