Home
Class 12
MATHS
Reciprocal System of Vectors...

Reciprocal System of Vectors

Promotional Banner

Similar Questions

Explore conceptually related problems

Scalar Product for 4 Vectors||Vector Product OF 4 Vectors|| Vector Equation|| Reciprocal System OF Vector

If a,b,c and p,q,r are reciprocal systemm of vectors, then axxp+bxxq+cxxr is equal to

If bar(p)bar(q)bar(r) is reciprocal system of vector triad bar(a),bar(b) and bar(c) then [bar(a)bar(b)bar(c)][bar(p)bar(q)bar(r)]=

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

Let vec a,vec b, and vec c be non-coplanar vectors and let the equation vec a',vec b',vec c' ,are reciprocal system of vector vec a,vec b,vec c, then prove that vec a xxvec a'+vec b xxvec b'+vec c xxvec c ,is a null vector.

Scalar Triple Product| Vector Triple aproduct| Reciprocal System | Equation solving

Scalar Triple Product, Vector Triple aproduct, Reciprocal System , Equation solving

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these