Home
Class 11
PHYSICS
If vec(a)=m vec(b)+vec(c ). The scalar m...

If `vec(a)=m vec(b)+vec(c )`. The scalar m is

A

`(vec(a).vec(b)- vec(b).vec(c ))/(b^(2))`

B

`(vec(c ).b-vec(a).vec(c ))/(a^(2))`

C

`(vec(c ).vec(a)- vec(b).vec( c))/(c^(2))`

D

`(vec(a).vec(b)-vec(b).vec(c ))/(a^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(C) = vec(A) + vec(B) then

If vec(a), vec(b), vec(c ) are unit vectors such that vec(a).vec(b)= vec(a).vec(c )=0 and (vec(b), vec(c ))= (pi)/(6) , then vec(a) =

Let vec(a), vec(b), vec(c ) be such that vec(c ) ne vec(0), vec(a) xx vec(b)= vec(c ) and vec(b) xx vec(c )= vec(a) then show that vec(a), vec(b) and vec(c ) are pairwise perpendicular, |vec(b)|=1 and |vec(c )|= |vec(a)| .

If vec(a) + 2vec(b) + 4vec(c ) = vec(0) then show that vec(a) xx vec(b) =4 (vec(b) xx vec(c ))= 2(vec(c ) xx vec(a))

If the vectors vec(a), vec(b), vec(c ) form the sides vec(BC), vec(CA), vec(AB) respectively of triangle ABC then show that vec(a) xx vec(b) = vec(b)xx vec(c ) = vec(c ) xx vec(a) .

Let vec(C ) = vec(A) + vec(B) ,

If vec(A) = vec(B) - vec( C) then determine the angle between vec(A) and vec(B)

If vec(a),vec(b),vec(c ) are non-coplanar vectros, then prove that the four points -vec(a) + 4vec(b)-3vec(c ), 3vec(a) +2vec(b)-5vec(c ), -3vec(a) +8vec(b)-5vec(c ) and -3vec(a)+2vec(b)+vec(c ) are complanar.