Home
Class 11
MATHS
Using the principle of finite Mathematic...

Using the principle of finite Mathematical Induction prove that
`1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2)) + "n terms" = (n(n+1)^(2)(n+2))/(12), AA n in N`.

A

`(n(n+1)^(2) (n+2)^(2) )/( 12)`

B

`(n(n+1)^(2) ( n+2))/( 12)`

C

`(n^(2) (n+1) (n+2) )/(12)`

D

`((n+1))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos

Similar Questions

Explore conceptually related problems

Using the principle of finite Mathematical Induction prove that 1^2+(1^2+2^2)+(1^2+2^2+3^2)+.......n terms =(n(n+1)^2(n+2))/12,foralln in N

Using the principle of finite Mathematical Induction prove the following: (vi) 2+3.2+4.2^(2)+………."upto n terms" = n.2^(n) .

Using the principle of finite Mathematical Induction prove the following: (iii) 1/(1.4) + 1/4.7 + 1/7.10 + ……… + "n terms" = n/(3n+1) .

Using the principle of finite Mathematical Indcution prove that 2.3 + 3.4 + 4.5 + ……."upto n terms" = (n(n^(2)+6n+11))/(3) .

Use mathematical induction to prove that statement 1^(3) + 2^(3) + 3^(3) + . . . + n^(3) = (n^(2) (n + 1)^(2))/( 4) , AA n in N

Using the principle of finite Mathematical Induction prove the following: (v) 3.5^(2n+1)+2^(3n+1) is divisible by 17, AA n in N .

Using the principle of finite Mathematical Induction prove the following: (iv) a+ar+ar^(2)+……..+"n terms" = (a(r^(n)-1))/(r-1) , r != 1 .

Using the principle of finite Mathematical Induction prove that 1.2.3+2.3.4+3.4.5.+………… upto n terms = n(n+1)(n+2)(n+3))/4,for all n in N

Using the principle of Mathematical Induction , forall n in N , prove that 1^2+2^2+3^2+.....n^2=(n(n+1)(2n+1))/6

AAKASH SERIES-MATHEMATICAL INDUCTION-PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)
  1. Using the principle of finite Mathematical Induction prove that 1^(2...

    Text Solution

    |

  2. Let P(n) denote the statement that n^(2) +n is odd. It is seen that P(...

    Text Solution

    |

  3. The statement P(n) (1xx1!) + (2 xx2!) + (3 xx 3!) + … …. + (nxx n!) = ...

    Text Solution

    |

  4. If P(n) be the statement n (n+1)+1 is an integer, then which of the fo...

    Text Solution

    |

  5. n gt 1, n even rArr digit in the units place of 2^(2n)+1

    Text Solution

    |

  6. log ( x )^(n) = n .log x is true for n.

    Text Solution

    |

  7. If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

    Text Solution

    |

  8. 4^(3) + 5^(3) + 6^(3) + … + 10^(3)

    Text Solution

    |

  9. Sum of the series S=t^(2) - 2^(2) + 3^(2) - 4^(2) + …... - 2002^(2) + ...

    Text Solution

    |

  10. (sumn^(3) ) ( sumn) = (sumn^2) ^2 if

    Text Solution

    |

  11. n^( th) term of the series 4+14+ 30 + 52+ …..

    Text Solution

    |

  12. If 1+ 5+ 12+ 22 + 35+ ….. + to n terms = ( n^(2) (n+1) )/(2) then n^...

    Text Solution

    |

  13. 1+ 3+ 7 + 15…n terms =

    Text Solution

    |

  14. 1^(2) + 3^(2) + 5^(2) + …. upto n terms =

    Text Solution

    |

  15. 2+ 3.2 + 4.2^(2) + …... upto n terms =

    Text Solution

    |

  16. (1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1...

    Text Solution

    |

  17. Sum of first 'n' terms of the series = (3)/(2) + (5)/(4) + (9)/(8) + (...

    Text Solution

    |

  18. 0.2 + 0.22 + 0.222+ …. upto n terms is equal to

    Text Solution

    |

  19. 2+7+14+…..+ (n^(2) + 2n-1)=

    Text Solution

    |

  20. 1.6 + 2.9+ 3.12+ ….. + n ( 3n+3)=

    Text Solution

    |

  21. 2.4 + 4.7 + 6.10+ …. upto (n-1) terms=

    Text Solution

    |