Home
Class 11
MATHS
S(n) = (1+2+3+....+n)/( n) then S(1)^(2)...

`S_(n) = (1+2+3+....+n)/( n)` then `S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ..... + S_(n)^(2) =`

A

`(n)/( 24) (2n^(2) + 9n+13)`

B

`(1)/( 24) ( 2n^(2) + 9n+13) `

C

`(n^2)/( 24) (2n^(2) + 9n+13)`

D

`(n)/( 24) ( 2n^(2) - 9n +13)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos

Similar Questions

Explore conceptually related problems

If x^(3) - x^(2) + 33x + 5 = 0 then s_(1), s_(2) , s_(3) are

S_(n) = 1^(3) + 2^(3) + 3^(3) + …... + n^(3) and T_(n) = 1+ 2 + 3+ 4…...n

In an AP: (i) Given a=5, d=3, a_(n) = 50 , find n and S_(n) (ii) given a=7, a_(13) = 35 , find d and S_(13) . (iii) given a_(12) = 37, d=3 , find a and S_(12) (iv) given a_(3) = 15, S_(10) = 125 , find d and a_(10) (v) given a=2, d= 8, S_(n) = 90 , find n and a_(n) (vi) given a_(n) = 4, d=2, S_(n) = - 14 , find n and a. (vii) given l=28, S= 144, and there are total 9 terms, find a.

If S_(n) danotes the sum of n terms of n terms of an A.P. then S_(n + 3) - 3 S_(n + 2) + 3S_(n + 1) - S_(n) =

If S_(n) denotes the sum of first n terms of an A.P. and S_(2n)= 3S_(n) , then (S_(3n))/(S_(n))=

The sum of r terms of an A.P. is denoted by S_(r ) and (S_(m+1))/(S_(n+1)) = ((m+1)^(2))/((n+1)^(2)) , then the ratio of the 8^(th) term to 6^(th) term is

If S_n denotes the sum of first n natural number then S_1 + S_2x + S_3 x^2 +……+S_n x^(n-1) + ……oo terms =

If 1+ 5+ 12+ 22 + 35+ ….. + to n terms = ( n^(2) (n+1) )/(2) then n^( th) term of L.H.S is

Using mathematical induction, the numbers a_(n)'s are defined by, a_(0) =1, a_(n+1) = 3n^(2) + n+a_(n) ( n ge 0) . Then a_(n) =

AAKASH SERIES-MATHEMATICAL INDUCTION-PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)
  1. S(n) = (1+2+3+....+n)/( n) then S(1)^(2) + S(2)^(2) + S(3)^(2) + ........

    Text Solution

    |

  2. Let P(n) denote the statement that n^(2) +n is odd. It is seen that P(...

    Text Solution

    |

  3. The statement P(n) (1xx1!) + (2 xx2!) + (3 xx 3!) + … …. + (nxx n!) = ...

    Text Solution

    |

  4. If P(n) be the statement n (n+1)+1 is an integer, then which of the fo...

    Text Solution

    |

  5. n gt 1, n even rArr digit in the units place of 2^(2n)+1

    Text Solution

    |

  6. log ( x )^(n) = n .log x is true for n.

    Text Solution

    |

  7. If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

    Text Solution

    |

  8. 4^(3) + 5^(3) + 6^(3) + … + 10^(3)

    Text Solution

    |

  9. Sum of the series S=t^(2) - 2^(2) + 3^(2) - 4^(2) + …... - 2002^(2) + ...

    Text Solution

    |

  10. (sumn^(3) ) ( sumn) = (sumn^2) ^2 if

    Text Solution

    |

  11. n^( th) term of the series 4+14+ 30 + 52+ …..

    Text Solution

    |

  12. If 1+ 5+ 12+ 22 + 35+ ….. + to n terms = ( n^(2) (n+1) )/(2) then n^...

    Text Solution

    |

  13. 1+ 3+ 7 + 15…n terms =

    Text Solution

    |

  14. 1^(2) + 3^(2) + 5^(2) + …. upto n terms =

    Text Solution

    |

  15. 2+ 3.2 + 4.2^(2) + …... upto n terms =

    Text Solution

    |

  16. (1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1...

    Text Solution

    |

  17. Sum of first 'n' terms of the series = (3)/(2) + (5)/(4) + (9)/(8) + (...

    Text Solution

    |

  18. 0.2 + 0.22 + 0.222+ …. upto n terms is equal to

    Text Solution

    |

  19. 2+7+14+…..+ (n^(2) + 2n-1)=

    Text Solution

    |

  20. 1.6 + 2.9+ 3.12+ ….. + n ( 3n+3)=

    Text Solution

    |

  21. 2.4 + 4.7 + 6.10+ …. upto (n-1) terms=

    Text Solution

    |