Home
Class 11
MATHS
The greatest positive integer which divi...

The greatest positive integer which divides `n (n+1)(n+2)….. (n+r-1), AA n in N` is

A

`r!`

B

`(r+1)!`

C

`n+r`

D

`n-r+1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos

Similar Questions

Explore conceptually related problems

The greatest positive integer which divides (n+16) (n+17) (n+18)(n+19), for all positive integers n is

The greatest positive integer which divides (n+16)(n+17)(n+18)(n+19) , for all positive integers n , is

The least positive integer n for which (1+i)^(n)=(1-i)^(n) . is

The least positive integer n for which (1+i)^n=(1-i)^n holds is

The least positive integer n for which (1+i)^n/((1-i))^(n-2) is a real number is

The smallest +ve integer n for which n! lt ( (n+1)/( 2) )^(n) holds is

If n is a positive integer, then (1+i)^n+(1-i)^n=

If 'n' is a positive integer, then n.1+ (n-1) . 2+ (n-2). 3+….. + 1.n=

Find the greatest integer n such that (105)^n divides 2007!.

AAKASH SERIES-MATHEMATICAL INDUCTION-PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)
  1. The greatest positive integer which divides n (n+1)(n+2)….. (n+r-1), A...

    Text Solution

    |

  2. Let P(n) denote the statement that n^(2) +n is odd. It is seen that P(...

    Text Solution

    |

  3. The statement P(n) (1xx1!) + (2 xx2!) + (3 xx 3!) + … …. + (nxx n!) = ...

    Text Solution

    |

  4. If P(n) be the statement n (n+1)+1 is an integer, then which of the fo...

    Text Solution

    |

  5. n gt 1, n even rArr digit in the units place of 2^(2n)+1

    Text Solution

    |

  6. log ( x )^(n) = n .log x is true for n.

    Text Solution

    |

  7. If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

    Text Solution

    |

  8. 4^(3) + 5^(3) + 6^(3) + … + 10^(3)

    Text Solution

    |

  9. Sum of the series S=t^(2) - 2^(2) + 3^(2) - 4^(2) + …... - 2002^(2) + ...

    Text Solution

    |

  10. (sumn^(3) ) ( sumn) = (sumn^2) ^2 if

    Text Solution

    |

  11. n^( th) term of the series 4+14+ 30 + 52+ …..

    Text Solution

    |

  12. If 1+ 5+ 12+ 22 + 35+ ….. + to n terms = ( n^(2) (n+1) )/(2) then n^...

    Text Solution

    |

  13. 1+ 3+ 7 + 15…n terms =

    Text Solution

    |

  14. 1^(2) + 3^(2) + 5^(2) + …. upto n terms =

    Text Solution

    |

  15. 2+ 3.2 + 4.2^(2) + …... upto n terms =

    Text Solution

    |

  16. (1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1...

    Text Solution

    |

  17. Sum of first 'n' terms of the series = (3)/(2) + (5)/(4) + (9)/(8) + (...

    Text Solution

    |

  18. 0.2 + 0.22 + 0.222+ …. upto n terms is equal to

    Text Solution

    |

  19. 2+7+14+…..+ (n^(2) + 2n-1)=

    Text Solution

    |

  20. 1.6 + 2.9+ 3.12+ ….. + n ( 3n+3)=

    Text Solution

    |

  21. 2.4 + 4.7 + 6.10+ …. upto (n-1) terms=

    Text Solution

    |