Home
Class 11
MATHS
Statement -1 : For every natural number ...

Statement -1 : For every natural number ` n ge 2, (1)/( sqrt1) + (1)/( sqrt2) + (1)/( sqrt3) + … + (1)/( sqrtn) gt sqrtn`.
Statement - 2 : For every natural number `n ge 2, sqrt(n(n+1) ) lt n+1`

A

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1

B

Statement -, 1 is true, Statement - 2 is false

C

Statement - 1 is false, Statement - 2 is true

D

Statement- 1 is true, Statement-2 is true , Statement-2 is a correct explanation for Statement-1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos

Similar Questions

Explore conceptually related problems

For every integer n ge 1, (3^(2n) -1) is divisible by

Statement -1: For each natural number n, (n+1)^(7) - n^(7) -1 is divisible by 7 . Statement - 2 : For each natural number n, n^(7) - n is divisible by 7.

Statement - I : The variance of first n even natural numbers is (n^(2) - 1)/(4) Statement - II : The sum of first n natural numbers is (n(n+1))/(2) and the sum of the squares of first n natural numbers is (n(n+1)(2n+1))/(6)

Lt_(n rarr oo)[(1)/(3n+1) + (1)/(3n+2)+…+(1)/(4n)]

If a,b and n are natural numbers then a^(2n-1) + b^(2n-1) is divisible by

If S_(n)={(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+(1)/(3+sqrt(3n))+....+(1)/(n+sqrt(n^(2)))} then {:(" "Lt),(n rarr oo):} S_(n)=

Lt_(n rarr oo)[(1)/(n)+(1)/(sqrt(n^(2) -1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+... "to n terms"]

lim_(n to infty) (sqrt(1)+sqrt(2)+ . . . +sqrt(n))/(n^(3//2))=

AAKASH SERIES-MATHEMATICAL INDUCTION-PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)
  1. Statement -1 : For every natural number n ge 2, (1)/( sqrt1) + (1)/( ...

    Text Solution

    |

  2. Let P(n) denote the statement that n^(2) +n is odd. It is seen that P(...

    Text Solution

    |

  3. The statement P(n) (1xx1!) + (2 xx2!) + (3 xx 3!) + … …. + (nxx n!) = ...

    Text Solution

    |

  4. If P(n) be the statement n (n+1)+1 is an integer, then which of the fo...

    Text Solution

    |

  5. n gt 1, n even rArr digit in the units place of 2^(2n)+1

    Text Solution

    |

  6. log ( x )^(n) = n .log x is true for n.

    Text Solution

    |

  7. If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) then k=

    Text Solution

    |

  8. 4^(3) + 5^(3) + 6^(3) + … + 10^(3)

    Text Solution

    |

  9. Sum of the series S=t^(2) - 2^(2) + 3^(2) - 4^(2) + …... - 2002^(2) + ...

    Text Solution

    |

  10. (sumn^(3) ) ( sumn) = (sumn^2) ^2 if

    Text Solution

    |

  11. n^( th) term of the series 4+14+ 30 + 52+ …..

    Text Solution

    |

  12. If 1+ 5+ 12+ 22 + 35+ ….. + to n terms = ( n^(2) (n+1) )/(2) then n^...

    Text Solution

    |

  13. 1+ 3+ 7 + 15…n terms =

    Text Solution

    |

  14. 1^(2) + 3^(2) + 5^(2) + …. upto n terms =

    Text Solution

    |

  15. 2+ 3.2 + 4.2^(2) + …... upto n terms =

    Text Solution

    |

  16. (1^(2) )/( 1) + (1^(2) + 2^(2) )/(1+2) + (1^(2) + 2^(2) + 3^(2) )/( 1...

    Text Solution

    |

  17. Sum of first 'n' terms of the series = (3)/(2) + (5)/(4) + (9)/(8) + (...

    Text Solution

    |

  18. 0.2 + 0.22 + 0.222+ …. upto n terms is equal to

    Text Solution

    |

  19. 2+7+14+…..+ (n^(2) + 2n-1)=

    Text Solution

    |

  20. 1.6 + 2.9+ 3.12+ ….. + n ( 3n+3)=

    Text Solution

    |

  21. 2.4 + 4.7 + 6.10+ …. upto (n-1) terms=

    Text Solution

    |