Home
Class 11
MATHS
If 2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) ...

If `2^(3) + 4^(3) + 6^(3) + … + (2n)^(3) = kn^(2) ( n+1)^(2) ` then `k=`

A

`1//2`

B

`1`

C

`3//2`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) LEVEL-I (Principle of Mathematical Induction) (Straight Objective Type Questions)|55 Videos
  • LOCUS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • MATRICES

    AAKASH SERIES|Exercise LINEAR EQUATIONS - PRACTICE EXERCISE|15 Videos

Similar Questions

Explore conceptually related problems

Use mathematical induction to prove that statement 1^(3) + 2^(3) + 3^(3) + . . . + n^(3) = (n^(2) (n + 1)^(2))/( 4) , AA n in N

1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) = (n (n + 1) (2 n + 1))/( 6)

1^(3) + 1^(2) + 1+2^(3) + 2^(2) + 2+3^(2) + 3^(2) + 3+3… 3n terms =

S_(n) = 1^(3) + 2^(3) + 3^(3) + …... + n^(3) and T_(n) = 1+ 2 + 3+ 4…...n

If (1)/( 2 xx 4) + (1)/( 4 xx 6) + (1)/( 6 xx 8) + …. N terms = (kn)/( n+1) then k=

((1)/(2), (2)/(2) )/(1^3) + ((2)/(2) , (3)/(2) )/( 1^3 + 2^3) + ((3)/(2) , (4)/(2) ) / (1^(3) + 2^(3) + 3^(3) ) + ..... n terms