Home
Class 11
MATHS
If 0 lt phi lt pi//2 , and x = sum(n = 0...

If 0 `lt phi lt pi//2 , and x = sum_(n = 0)^(infty) cos^(2n) phi, y = sum_(n=0)^(infty) sin^(2n ) phi and z = sum_(n=0)^(infty) cos^(2n) phi sin^(2n) phi, `then

A

`xy +z`

B

`xy+y`

C

`x+y+z`

D

`yz+x`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I) (Linked Comprehension Type Questions)|11 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I) (Straight Objective Type Questions)|16 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi/2, x = sum_(n=0)^(oo)cos^(2n) theta, y =sum_(n=0)^(oo)sin^(2n)theta , and z=sum_(n=0)^(oo) cos^(2n)theta sin^(2n) theta then show that (i) xyz=xy+z (ii) xyz=x+y+z

If x = sum_(n = 0)^(infty) a^(n) , y = sum_(n = 0)^(infty) b^(n) , z = sum_(n=0)^(infty) c^(n) where a,b,c are in A.P . And |a| lt 1, |b| lt 1, |c| lt , then x,y,z, are in

Given that 0 lt x lt (pi)/(4), (pi)/(4) lt y lt (pi)/(2) and sum_(k = 0)^(infty) (-1)^(k) tan^(2k) x = p, sum_(k = 0)^(infty)(-1)^(k) cot^(2k) y = q then sum_(k = 0)^(infty) tan^(2k) x cot^(2k) y is

sum_(n = 0)^(oo) ((2i)/(3))^n =

cos ^(3) x sin 2x = sum _(x =0) ^(n) ar sin (rx) AA x in R, then

cos ^(3) x sin 2x= sum _(x=0) ^(n) a _(r) sin (rx) AA x in R, then