Home
Class 11
MATHS
Let P(k)=(1+cos""(pi)/(4k))(1+cos""((2k-...

Let `P(k)=(1+cos""(pi)/(4k))(1+cos""((2k-1)pi)/(4k))(1+cos""((2k+1pi))/(4k))(1+cos""((4k-1)pi)/(4k))` Then

A

`P(3)=1/16`

B

`p(4)=(2-sqrt2)/16`

C

`P(5)=(3-sqrt5)/32`

D

`P(6)=(2-sqrt3)/16`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I) (Linked Comprehension Type Questions)|11 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I) (Straight Objective Type Questions)|16 Videos
  • MULTIPLE & SUBMULTIPLE

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - II) (LEVEL - II) (Linked Comprehension Type Questions)|5 Videos
  • MEAN VALUE THEOREMS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I (LEVEL-II (MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS ) )|2 Videos
  • MULTIPLE & SUBMULTIPLE ANGLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|68 Videos

Similar Questions

Explore conceptually related problems

Let P(k) = (1+"cos"(pi)/(4k))(1+"cos"((2k-1)pi)/(4k))(1 + "cos" ((2k+1)pi)/(4k))(1+"cos"((4k-1)pi)/(4k)) . Then

sum_(k=1)^3 cos^(2)((2k-1)(pi)/(12))=

Cos^(-1)("cos"(5pi)/4)=

Prove that cos""(2pi)/7.cos""(4pi)/7.cos""(8pi)/7=1/8 .

Prove that cos. (2pi)/(7). Cos. (4pi)/(7). Cos. (8pi)/(7)=(1)/(8)

If (3-"tan"^(2)(pi)/(7))/(1-"tan"^(2)(pi)/(7))="k cos" (pi)/(7) then the value of k is

tan((pi)/4+1/2"cos"^(-1)a/b)+tan((pi)/4-1/2"cos"^(-1)a/b)=

The value of 1+sum_(k=0)^14{(cos)((2k+1)pi)/(15)+(isin)((2k+1)pi)/(15)} is

For 0 lt theta lt (pi)/(2) ,the, solution (s) of sum_(k = 1)^(6) cosec (theta + ((k - 1)pi)/(4)) cosec (0 + (k pi)/(4)) = 4 sqrt(2) is /are