Home
Class 11
MATHS
For x, y, z, t in R, sin^(-1)x+cos^(-1)y...

For `x, y, z, t in R, sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)t+3pi`
The value of x+y+z is equal to

A

1

B

0

C

2

D

-1

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - III) (INTEGER TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I STRAIGHT OBJECTIVE TYPE QUESTIONS)|39 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - III) (MATRIX MATCHING TYPE QUESTIONS)|1 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) x+ tan^(-1) y + tan^(-1) z = pi , then prove that x + y+z =xyz .

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi then

Knowledge Check

  • For x, y, z, t in R, sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)t+3pi The value of cos^(-1)(min{x,y,z}) is

    A
    0
    B
    `pi/2`
    C
    `pi`
    D
    `pi/3`
  • For x,y,z, t in R, sin^(-1)x+cos^(-1)y+sec^(-1)zget^(2)-sqrt(2pi)t+3pi The value of cos^(-1)("min"{x,y,z}) is

    A
    0
    B
    `(pi)/2`
    C
    `pi`
    D
    `(pi)/3`
  • For x,y,z, t in R, sin^(-1)x+cos^(-1)y+sec^(-1)zget^(2)-sqrt(2pi)t+3pi The principal value of cos^(-1)(cos5t^(2)) is

    A
    `(3pi)/2`
    B
    `(pi)/2`
    C
    `(pi)/3`
    D
    `(2pi)/3`
  • Similar Questions

    Explore conceptually related problems

    If cos^(-1) x + cos^(-1) y + cos^(-1) z = 3pi , then

    If cos ^(-1) x + cos ^(-1) y + cos ^(-1) z = 2pi, then

    If (sin^(-1)x)^(2)+(sin^(-1)y)^(2)+(sin^(-1)z)^(2)=(3pi^(2))/4 , then the value of (x-y+z) can be

    If tan^(-1)x + tan^(-1)y+tan^(-1)z=pi/2 , then 1-xy-yz-zx is equal to

    If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=