Home
Class 11
MATHS
sin[cot^(-1){cos(tan^(-1)x)}]=...

`sin[cot^(-1){cos(tan^(-1)x)}]=`

A

0

B

1

C

`1/sqrt(3)`

D

`sqrt(2/3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|4 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I) (LEVEL - I MATRIX MATCHING TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - III) (INTEGER TYPE QUESTIONS)|9 Videos
  • HYPERBOLIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET EXERCISE-II (STRAIGHT OBJECTIVE TYPE QUESTIONS)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos

Similar Questions

Explore conceptually related problems

Sin[2Cos^(-1){Cot(2tan^(-1)x)}]=0 Find x

The value of x for which sin[cot^(-1)(1+x)]=cos(tan^(-1)x) is :

The value of x for which sin[cot^(-1)(1+x)]=cos(tan^(-1)x) is :

The value of x which satisfies sin(cot^(-1)x)=cos(tan^(-1)(1+x)) is

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), The value of x for which f(x) = 0 is

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If f(x)=0 then a^(2)=

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If a^(2)=26//51," then "b^(2)=

The value of x which satisfies sin(Cot^(-1) x) = cos(Tan^(-1) + (1+x)) is

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))