Home
Class 12
MATHS
If e^(( cos^2 x + cos^4x+ cos ^6 x + ...

If `e^(( cos^2 x + cos^4x+ cos ^6 x + ……..oo ) log_e 2)` satisfies the equation ` t^2 - 9t + 8=0` , then the value of `( 2 sin x)/( sin x + sqrt(3) cos x) ( 0 lt x lt (pi)/(2))` is

A

`2 sqrt(3)`

B

`3/2`

C

`sqrt(3)`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, let's break down the components of the question. ### Step 1: Analyze the Infinite Series The expression given is: \[ e^{(\cos^2 x + \cos^4 x + \cos^6 x + \ldots) \log_e 2} \] This is an infinite geometric series where: - The first term \( a = \cos^2 x \) - The common ratio \( r = \cos^2 x \) The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} = \frac{\cos^2 x}{1 - \cos^2 x} = \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \] Thus, we can rewrite the expression as: \[ e^{\cot^2 x \log_e 2} = 2^{\cot^2 x} \] ### Step 2: Set Up the Equation From the problem, we know that this expression satisfies the equation: \[ t^2 - 9t + 8 = 0 \] To find the roots of this quadratic equation, we can use the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -9, c = 8 \). Calculating the discriminant: \[ b^2 - 4ac = 81 - 32 = 49 \] Calculating the roots: \[ t = \frac{9 \pm 7}{2} = \{8, 1\} \] ### Step 3: Relate Roots to the Expression The expression \( 2^{\cot^2 x} \) must equal one of the roots: 1. If \( 2^{\cot^2 x} = 8 \): \[ \cot^2 x = 3 \implies \cot x = \sqrt{3} \implies x = \frac{\pi}{6} \] 2. If \( 2^{\cot^2 x} = 1 \): \[ \cot^2 x = 0 \implies \cot x = 0 \implies x = \frac{\pi}{2} \] Since \( 0 < x < \frac{\pi}{2} \), we take \( x = \frac{\pi}{6} \). ### Step 4: Calculate the Required Expression Now we need to find the value of: \[ \frac{2 \sin x}{\sin x + \sqrt{3} \cos x} \] Substituting \( x = \frac{\pi}{6} \): \[ \sin \frac{\pi}{6} = \frac{1}{2}, \quad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \] Thus, the expression becomes: \[ \frac{2 \cdot \frac{1}{2}}{\frac{1}{2} + \sqrt{3} \cdot \frac{\sqrt{3}}{2}} = \frac{1}{\frac{1}{2} + \frac{3}{2}} = \frac{1}{2} \] ### Final Answer The value of the expression is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

If e^((cos^2x+cos^4+cos^x……)log3) satisfies the equation t^2-8t-9=0 then the value of tnx,(0ltxltpi/2) is (A) sqrt(3) (B) sqrt(2) (C) 1 (D) 1/sqrt(2)

If tan x = 1, 0 lt x lt 90^(@) , then what is the value of 2 sin x cos x?

If exp(sin^(2)x+sin^(4)x+sin^(6)x....... upto oo)log_(e)2 satisfies the equation x^(2)-17x+16=0 then the value of (2cos x)/(sin x+2cos x),(0

If e^((sin^(2)x+sin^(4)x+sin^(6)x+...oo)ln2) satisfies the equation x^(2)-9x+8=0 find the value of (cos x)/(cos x+sin x),0

Statement -1:If exp {("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] " satisfie the equation" x^(2)-9x +8=0, "then " ("cos"x)/("cos" x + "sin"x) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum "sin"^(2) x + "sin"^(4)x + "sin"^(6) x + .... oo is equal to "tan"^(2)x

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-A
  1. Two vertical poles are 150 m apart and the height of one is t...

    Text Solution

    |

  2. Evaluate : lim(x->0)(int0^(x^2)sinsqrt(t)\ dt)/(x^3)

    Text Solution

    |

  3. If e^(( cos^2 x + cos^4x+ cos ^6 x + ……..oo ) loge 2) satisfies t...

    Text Solution

    |

  4. The locus of the midpoint of the segment joining the focus to a moving...

    Text Solution

    |

  5. A missile fires a target . The probability of getting intercepted is 1...

    Text Solution

    |

  6. If 0 lt theta, phi lt (pi)/(2), x = sum(n=0)^(oo)cos^(2n)theta, y=sum(...

    Text Solution

    |

  7. f(x+1)=f(x) + f(1) , f(x), g(x) : N to N g(x) = any arbitrary functi...

    Text Solution

    |

  8. The equation of the line through the point (0,1,2) and perpendicular t...

    Text Solution

    |

  9. Let alpha be the angle between the lines whose direction cosines satis...

    Text Solution

    |

  10. The value of the integral int (sin theta.sin2theta(sin^(6)theta+sin...

    Text Solution

    |

  11. The value of int(-1)^(1)x^(2)e^([x^(3)])dx, where [t] denotes the grea...

    Text Solution

    |

  12. A man is observing, from the top of a tower, a boat speeding towards t...

    Text Solution

    |

  13. A tangent is drawn to the parabola y^(2) = 6x which is perpendicular t...

    Text Solution

    |

  14. All possible values of theta in [0, 2pi] for which sin 2theta +tan 2th...

    Text Solution

    |

  15. Let the lines (2-i)z=(2+i) barz and (2+i)z+(i-2)barz-4i=0, (here i^(2)...

    Text Solution

    |

  16. The image of the point (3, 5) in the line x -y + 1 = 0, lies on :

    Text Solution

    |

  17. If the cuves, (x^(2))/(a)+(y^(2))/(b)=1 and (x^(2))/(c )+(y^(2))/(d)=1...

    Text Solution

    |

  18. lim(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

    Text Solution

    |

  19. The coefficients a, b and c of the quadratic equation, ax^(2) + bx + c...

    Text Solution

    |

  20. The total number of positive integral solutions (x, y, z) such that xy...

    Text Solution

    |