Home
Class 12
MATHS
If 0 lt theta, phi lt (pi)/(2), x = sum(...

If `0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi` and `z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi` then :

A

`xy-z=(x+y)z`

B

`xy+yz+zx=z`

C

`xyz=4`

D

`xy+z=(x+y)z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( x \), \( y \), and \( z \) defined as follows: 1. \( x = \sum_{n=0}^{\infty} \cos^{2n} \theta \) 2. \( y = \sum_{n=0}^{\infty} \sin^{2n} \phi \) 3. \( z = \sum_{n=0}^{\infty} \cos^{2n} \theta \sin^{2n} \phi \) ### Step 1: Calculate \( x \) The series for \( x \) is a geometric series with the first term \( a = 1 \) and common ratio \( r = \cos^2 \theta \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Thus, we have: \[ x = \frac{1}{1 - \cos^2 \theta} \] Using the identity \( 1 - \cos^2 \theta = \sin^2 \theta \), we can rewrite \( x \) as: \[ x = \frac{1}{\sin^2 \theta} \] ### Step 2: Calculate \( y \) Similarly, for \( y \), we have: \[ y = \sum_{n=0}^{\infty} \sin^{2n} \phi \] This is also a geometric series with first term \( a = 1 \) and common ratio \( r = \sin^2 \phi \). Thus: \[ y = \frac{1}{1 - \sin^2 \phi} \] Using the identity \( 1 - \sin^2 \phi = \cos^2 \phi \), we can rewrite \( y \) as: \[ y = \frac{1}{\cos^2 \phi} \] ### Step 3: Calculate \( z \) Now, for \( z \): \[ z = \sum_{n=0}^{\infty} \cos^{2n} \theta \sin^{2n} \phi \] This is also a geometric series with first term \( a = 1 \) and common ratio \( r = \cos^2 \theta \sin^2 \phi \). Thus: \[ z = \frac{1}{1 - \cos^2 \theta \sin^2 \phi} \] ### Step 4: Substitute the values of \( x \) and \( y \) Now substituting the expressions we found for \( x \) and \( y \): \[ z = \frac{1}{1 - \left( \frac{1}{\sin^2 \theta} \right) \left( \frac{1}{\cos^2 \phi} \right)} \] This simplifies to: \[ z = \frac{1}{1 - \frac{1}{\sin^2 \theta \cos^2 \phi}} = \frac{\sin^2 \theta \cos^2 \phi}{\sin^2 \theta \cos^2 \phi - 1} \] ### Step 5: Final relationship Now, we can express \( z \) in terms of \( x \) and \( y \): \[ z = \frac{1}{\frac{1}{y} + \frac{1}{x} - \frac{1}{xy}} = \frac{xy}{x + y - 1} \] Thus, we have the relationship: \[ z + xy = x + y \] ### Conclusion The final result is: \[ z + xy = x + y \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

let 0

If 0

If =sum_(n=0)^(oo)cos^(2n)theta,quad y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)theta sin^(2n)phi, where 0

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-A
  1. The locus of the midpoint of the segment joining the focus to a moving...

    Text Solution

    |

  2. A missile fires a target . The probability of getting intercepted is 1...

    Text Solution

    |

  3. If 0 lt theta, phi lt (pi)/(2), x = sum(n=0)^(oo)cos^(2n)theta, y=sum(...

    Text Solution

    |

  4. f(x+1)=f(x) + f(1) , f(x), g(x) : N to N g(x) = any arbitrary functi...

    Text Solution

    |

  5. The equation of the line through the point (0,1,2) and perpendicular t...

    Text Solution

    |

  6. Let alpha be the angle between the lines whose direction cosines satis...

    Text Solution

    |

  7. The value of the integral int (sin theta.sin2theta(sin^(6)theta+sin...

    Text Solution

    |

  8. The value of int(-1)^(1)x^(2)e^([x^(3)])dx, where [t] denotes the grea...

    Text Solution

    |

  9. A man is observing, from the top of a tower, a boat speeding towards t...

    Text Solution

    |

  10. A tangent is drawn to the parabola y^(2) = 6x which is perpendicular t...

    Text Solution

    |

  11. All possible values of theta in [0, 2pi] for which sin 2theta +tan 2th...

    Text Solution

    |

  12. Let the lines (2-i)z=(2+i) barz and (2+i)z+(i-2)barz-4i=0, (here i^(2)...

    Text Solution

    |

  13. The image of the point (3, 5) in the line x -y + 1 = 0, lies on :

    Text Solution

    |

  14. If the cuves, (x^(2))/(a)+(y^(2))/(b)=1 and (x^(2))/(c )+(y^(2))/(d)=1...

    Text Solution

    |

  15. lim(n to oo) (1+(1+(1)/(2)+………+(1)/(n))/(n^(2)))^(n) is equal to :

    Text Solution

    |

  16. The coefficients a, b and c of the quadratic equation, ax^(2) + bx + c...

    Text Solution

    |

  17. The total number of positive integral solutions (x, y, z) such that xy...

    Text Solution

    |

  18. Integral value of k for which x^2-2(3k-1)x+8k^2-7 gt 0

    Text Solution

    |

  19. If a curve passes through the origin and the slope of the tangent to i...

    Text Solution

    |

  20. The statement A to (B to A) is equivalent to :

    Text Solution

    |