Home
Class 12
MATHS
Let veca=hati+2hatj-hatk, vecb=hati-hatj...

Let `veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk` be three given vectors. If `vecr` is a vector such that `vecr xx veca=vecc xx veca and vecr*vecb=0`, then `vecr*veca` is equal to _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \vec{r} \cdot \vec{a} \) given the conditions \( \vec{r} \times \vec{a} = \vec{c} \times \vec{a} \) and \( \vec{r} \cdot \vec{b} = 0 \). ### Step-by-Step Solution: 1. **Identify the vectors**: - \( \vec{a} = \hat{i} + 2\hat{j} - \hat{k} \) - \( \vec{b} = \hat{i} - \hat{j} \) - \( \vec{c} = \hat{i} - \hat{j} - \hat{k} \) 2. **Use the first condition**: From the condition \( \vec{r} \times \vec{a} = \vec{c} \times \vec{a} \), we can rearrange it to: \[ \vec{r} \times \vec{a} - \vec{c} \times \vec{a} = \vec{0} \] This implies that \( \vec{r} - \vec{c} = \lambda \vec{a} \) for some scalar \( \lambda \). 3. **Express \( \vec{r} \)**: \[ \vec{r} = \lambda \vec{a} + \vec{c} \] 4. **Use the second condition**: The second condition is \( \vec{r} \cdot \vec{b} = 0 \). Substituting \( \vec{r} \): \[ (\lambda \vec{a} + \vec{c}) \cdot \vec{b} = 0 \] Expanding this gives: \[ \lambda (\vec{a} \cdot \vec{b}) + \vec{c} \cdot \vec{b} = 0 \] 5. **Calculate \( \vec{a} \cdot \vec{b} \)**: \[ \vec{a} \cdot \vec{b} = (1)(1) + (2)(-1) + (-1)(0) = 1 - 2 + 0 = -1 \] 6. **Calculate \( \vec{c} \cdot \vec{b} \)**: \[ \vec{c} \cdot \vec{b} = (1)(1) + (-1)(-1) + (-1)(0) = 1 + 1 + 0 = 2 \] 7. **Substitute the dot products**: \[ \lambda (-1) + 2 = 0 \] Solving for \( \lambda \): \[ -\lambda + 2 = 0 \implies \lambda = 2 \] 8. **Substitute \( \lambda \) back into \( \vec{r} \)**: \[ \vec{r} = 2\vec{a} + \vec{c} \] Substitute the values of \( \vec{a} \) and \( \vec{c} \): \[ \vec{r} = 2(\hat{i} + 2\hat{j} - \hat{k}) + (\hat{i} - \hat{j} - \hat{k}) = (2\hat{i} + 4\hat{j} - 2\hat{k}) + (\hat{i} - \hat{j} - \hat{k}) \] Simplifying this: \[ \vec{r} = (2 + 1)\hat{i} + (4 - 1)\hat{j} + (-2 - 1)\hat{k} = 3\hat{i} + 3\hat{j} - 3\hat{k} \] 9. **Calculate \( \vec{r} \cdot \vec{a} \)**: \[ \vec{r} \cdot \vec{a} = (3\hat{i} + 3\hat{j} - 3\hat{k}) \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 3(1) + 3(2) + (-3)(-1) \] This simplifies to: \[ 3 + 6 + 3 = 12 \] ### Final Answer: \[ \vec{r} \cdot \vec{a} = 12 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - B)|10 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be three given vectors. If vecr is a vector such that vecrxxvecb=veccxxvecb and vecr.veca=0 , then the value of vecr.vecb is

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk ,and vecrxxveca = vecc xx veca , vecr*vecb=0 . Find vecr*veca

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-B
  1. A = [(0,-tan""(theta)/(2)),(tan""(theta)/(2),0)] and (I+A)(I-A)^-1=[(a...

    Text Solution

    |

  2. Find the total number of number lying between 100 and 1000 formed usin...

    Text Solution

    |

  3. Let veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk be th...

    Text Solution

    |

  4. If the system of equations kx + y + 2z = 1 3x-y-2z = 2 -2x-2y...

    Text Solution

    |

  5. The locus of the point of intersection of the lines (sqrt(3))kx+ky-4sq...

    Text Solution

    |

  6. The difference between degree and order of a differential equation tha...

    Text Solution

    |

  7. The number of integral values of 'k' for which the equation 3sinx + 4 ...

    Text Solution

    |

  8. Find no. of solutions log2(x-3)=log4(x-1)

    Text Solution

    |

  9. The sum of 162^(nd) power of the root of the equation x^3-2x^2+2x-1=0 ...

    Text Solution

    |

  10. Let m ,n in N and g c d ( 2, n)=1. if 30((30),(0))+((30),(1))+......

    Text Solution

    |

  11. If y=y(x) is the solution of the equation e^(sin y) cos y""(d...

    Text Solution

    |

  12. Let ( lamda , 2,1) be a point on the plane which passes throug...

    Text Solution

    |

  13. The area bounded by the lines y= || x-1| -2| and x axis is

    Text Solution

    |

  14. The value of the integral int(0)^(pi) | sin 2x| dx is

    Text Solution

    |

  15. If sqrt(3) ( cos^2 x) = ( sqrt(3)-1) cos x +1, the numbers of...

    Text Solution

    |

  16. For integers n and r, let ([n], [r])={(""^nCr," ""if " n ge r ge 0),...

    Text Solution

    |

  17. Let lambda be an interger. If the shortest distance between the lines...

    Text Solution

    |

  18. If a+alpha=1,b+beta=2 and af(n)+alphaf(1/n)=bn+beta/n, then find the v...

    Text Solution

    |

  19. Let a point P be such that its distance from the point (5, 0) is thri...

    Text Solution

    |

  20. If the area of the triangle formed by the positive x-axis, the normal...

    Text Solution

    |