Home
Class 12
MATHS
The value of |((a+1)(a+2),a+2,1),((a+2)...

The value of `|((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1)|` is

A

` (a + 2) (a + 3) (a + 4) `

B

`-2`

C

`(a+1) (a+2) (a+3)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{vmatrix} \] we will perform row operations to simplify the determinant. ### Step 1: Apply Row Operations We will perform the following row operations: - \( R_2 \leftarrow R_2 - R_1 \) - \( R_3 \leftarrow R_3 - R_1 \) After performing these operations, we will have: \[ D = \begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) - (a+1)(a+2) & (a+3) - (a+2) & 0 \\ (a+3)(a+4) - (a+1)(a+2) & (a+4) - (a+2) & 0 \end{vmatrix} \] ### Step 2: Simplify the Rows Calculating the new elements in \( R_2 \) and \( R_3 \): - For \( R_2 \): - First element: \( (a+2)(a+3) - (a+1)(a+2) = (a+2)((a+3) - (a+1)) = (a+2)(2) = 2(a+2) \) - Second element: \( (a+3) - (a+2) = 1 \) - Third element: \( 0 \) - For \( R_3 \): - First element: \( (a+3)(a+4) - (a+1)(a+2) = (a+3)((a+4) - (a+1)) = (a+3)(3) = 3(a+3) \) - Second element: \( (a+4) - (a+2) = 2 \) - Third element: \( 0 \) Now, the determinant becomes: \[ D = \begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ 2(a+2) & 1 & 0 \\ 3(a+3) & 2 & 0 \end{vmatrix} \] ### Step 3: Expand the Determinant Since the last column has two zeros, we can expand along the last column: \[ D = 1 \cdot \begin{vmatrix} (a+1)(a+2) & a+2 \\ 2(a+2) & 1 \end{vmatrix} \] ### Step 4: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ \begin{vmatrix} (a+1)(a+2) & a+2 \\ 2(a+2) & 1 \end{vmatrix} = (a+1)(a+2) \cdot 1 - (a+2) \cdot 2(a+2) \] This simplifies to: \[ = (a+1)(a+2) - 2(a+2)^2 \] ### Step 5: Factor and Simplify Factoring out \( (a+2) \): \[ = (a+2) \left( (a+1) - 2(a+2) \right) = (a+2)(a+1 - 2a - 4) = (a+2)(-a - 3) \] ### Step 6: Final Determinant Value Thus, we have: \[ D = (a+2)(-a - 3) \] Now, substituting back into the determinant gives us: \[ D = - (a+2)(a + 3) \] ### Step 7: Evaluate the Determinant Now we can evaluate the determinant value. The final expression simplifies to: \[ D = -2 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

Show that |((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1)|=-2

(a+1)(a+2),a+2,1(a+2)(a+3),a+3,1(a+3)(a+4),a+4,1]|=-2

|[(a+1)(a+2), a+2, 1], [(a+2)(a+3), a+3, 1], [(a+3)(a+4), a+4, 1]| =-2

Find value of determinant of A =abs[[(a+1)(a+2),(a+2),1],[(a+3)(a+2),(a+3),1],[(a+3)(a+4),(a+4),1]]

The value of 1/ ( 5 + (2 / (3 1/4 ) ) ) is

The value of 2(cot^(-1))(1)/(2)-(cot^(-1))(4)/(3) is

The value of 5-(2 1/2 -3/4) + (3 1/2- 1 1/4) is

The value of 5-(2(1)/2-3/4)+(3(1)/2-1(1)/4)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-A
  1. The intersection of three lines x-y=0 ,x +2y =3 and 2x +y=6 ...

    Text Solution

    |

  2. Consider the three planes P1 :3x +15 y +21 z=9, P2 :x - 3y ...

    Text Solution

    |

  3. The value of |((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1...

    Text Solution

    |

  4. The value of int(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

    Text Solution

    |

  5. Let P(x,y) be a point which is a constant distance from the origin. Th...

    Text Solution

    |

  6. For the statements p and q, consider the following compound statements...

    Text Solution

    |

  7. Let a, b in R. If the mirror image of the point P(a, 6, 9) with respec...

    Text Solution

    |

  8. Equation of plane through (1,0,2) and line of intersection of planes v...

    Text Solution

    |

  9. If P is a point on the parabola y = x^2+ 4 which is closest to the str...

    Text Solution

    |

  10. The angle of elevation of a jet plane from a point A on the ground is...

    Text Solution

    |

  11. If n ge 2 is a positive integer, then the sum of the series ""^(n+1)C...

    Text Solution

    |

  12. Let f(x)={(-55x,,,xlt-5),(2x^3-3x^2-120x,,,-5lexlt4),(2x^3-3x^2-36x+10...

    Text Solution

    |

  13. Let f be a twice differentiable function defined on R such that f(0) ...

    Text Solution

    |

  14. For which of the following curves, the line x + sqrt3 y = 2sqrt3 is th...

    Text Solution

    |

  15. The value of the integral, int1^3 [x^2-2x–2]dx , where [x] denotes the...

    Text Solution

    |

  16. Evaluate tan(1/4*Sin^-1(sqrt(63)/8))

    Text Solution

    |

  17. The negative of the statement ~p vv (p ^^ q) is

    Text Solution

    |

  18. A curve y=ax^2+bx+c passing through the point (1,2) has slope of tange...

    Text Solution

    |

  19. The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :

    Text Solution

    |

  20. Given y=y(x)passing through (1,2) such that xdy/dx +y = bx^4 then find...

    Text Solution

    |