Home
Class 12
MATHS
For the statements p and q, consider the...

For the statements p and q, consider the following compound statements :
(a) `(~q ^^ (p to q)) to ~p`
(b) `((p vv q) ^^ ~p) to q`
Then which of the following statements is correct?

A

(a) and (b) both are not tautologies.

B

(a) and (b) both are tautologies.

C

(a) is a tautology but not (b).

D

(b) is a tautology but not (a).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two compound statements given and determine if they are tautologies. A tautology is a statement that is always true regardless of the truth values of its components. Let's denote: - \( p \) and \( q \) are the statements. - \( \neg p \) is the negation of \( p \). - \( \neg q \) is the negation of \( q \). - \( p \to q \) is the implication from \( p \) to \( q \). - \( p \land q \) is the conjunction (AND) of \( p \) and \( q \). - \( p \lor q \) is the disjunction (OR) of \( p \) and \( q \). ### Step 1: Create a truth table for \( p \) and \( q \) | \( p \) | \( q \) | \( \neg p \) | \( \neg q \) | \( p \to q \) | \( p \lor q \) | |---------|---------|---------------|---------------|----------------|-----------------| | T | T | F | F | T | T | | T | F | F | T | F | T | | F | T | T | F | T | T | | F | F | T | T | T | F | ### Step 2: Evaluate statement (a): \( (\neg q \land (p \to q)) \to \neg p \) 1. **Calculate \( \neg q \land (p \to q) \)**: - For each combination of \( p \) and \( q \): - When \( p = T, q = T \): \( \neg q = F \), \( p \to q = T \) → \( F \land T = F \) - When \( p = T, q = F \): \( \neg q = T \), \( p \to q = F \) → \( T \land F = F \) - When \( p = F, q = T \): \( \neg q = F \), \( p \to q = T \) → \( F \land T = F \) - When \( p = F, q = F \): \( \neg q = T \), \( p \to q = T \) → \( T \land T = T \) | \( p \) | \( q \) | \( \neg q \) | \( p \to q \) | \( \neg q \land (p \to q) \) | |---------|---------|---------------|----------------|-------------------------------| | T | T | F | T | F | | T | F | T | F | F | | F | T | F | T | F | | F | F | T | T | T | 2. **Now calculate \( (\neg q \land (p \to q)) \to \neg p \)**: - When \( \neg q \land (p \to q) = F \): \( F \to \neg p \) is true regardless of \( \neg p \). - When \( \neg q \land (p \to q) = T \): \( T \to \neg p \) depends on \( \neg p \): - If \( p = F \) → \( \neg p = T \) → \( T \to T = T \) - If \( p = T \) → \( \neg p = F \) → \( T \to F = F \) | \( p \) | \( q \) | \( \neg p \) | \( \neg q \land (p \to q) \) | \( (\neg q \land (p \to q)) \to \neg p \) | |---------|---------|---------------|-------------------------------|------------------------------------------| | T | T | F | F | T | | T | F | F | F | T | | F | T | T | F | T | | F | F | T | T | T | Thus, statement (a) is a tautology. ### Step 3: Evaluate statement (b): \( ((p \lor q) \land \neg p) \to q \) 1. **Calculate \( (p \lor q) \land \neg p \)**: - For each combination of \( p \) and \( q \): - When \( p = T, q = T \): \( p \lor q = T \), \( \neg p = F \) → \( T \land F = F \) - When \( p = T, q = F \): \( p \lor q = T \), \( \neg p = F \) → \( T \land F = F \) - When \( p = F, q = T \): \( p \lor q = T \), \( \neg p = T \) → \( T \land T = T \) - When \( p = F, q = F \): \( p \lor q = F \), \( \neg p = T \) → \( F \land T = F \) | \( p \) | \( q \) | \( \neg p \) | \( p \lor q \) | \( (p \lor q) \land \neg p \) | |---------|---------|---------------|----------------|--------------------------------| | T | T | F | T | F | | T | F | F | T | F | | F | T | T | T | T | | F | F | T | F | F | 2. **Now calculate \( ((p \lor q) \land \neg p) \to q \)**: - When \( (p \lor q) \land \neg p = F \): \( F \to q \) is true regardless of \( q \). - When \( (p \lor q) \land \neg p = T \): \( T \to q \) depends on \( q \): - If \( q = T \) → \( T \to T = T \) - If \( q = F \) → \( T \to F = F \) | \( p \) | \( q \) | \( \neg p \) | \( (p \lor q) \land \neg p \) | \( ((p \lor q) \land \neg p) \to q \) | |---------|---------|---------------|--------------------------------|---------------------------------------| | T | T | F | F | T | | T | F | F | F | T | | F | T | T | T | T | | F | F | T | F | T | Thus, statement (b) is also a tautology. ### Conclusion: Both statements (a) and (b) are tautologies.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

The statement p vv q is

The following statement (p to q) to [(~p to q) to q] is

(p ^^ q) vv (~q ^^ p) -=

The statement (p^^(p to q) ^^ (q to r)) to r is

(p ^^ ~q) ^^ (~p vv q) is

The statement p Rightarrow p vv q

The statement (p rArr q) iff (~p ^^ q) is a

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-A
  1. The value of int(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

    Text Solution

    |

  2. Let P(x,y) be a point which is a constant distance from the origin. Th...

    Text Solution

    |

  3. For the statements p and q, consider the following compound statements...

    Text Solution

    |

  4. Let a, b in R. If the mirror image of the point P(a, 6, 9) with respec...

    Text Solution

    |

  5. Equation of plane through (1,0,2) and line of intersection of planes v...

    Text Solution

    |

  6. If P is a point on the parabola y = x^2+ 4 which is closest to the str...

    Text Solution

    |

  7. The angle of elevation of a jet plane from a point A on the ground is...

    Text Solution

    |

  8. If n ge 2 is a positive integer, then the sum of the series ""^(n+1)C...

    Text Solution

    |

  9. Let f(x)={(-55x,,,xlt-5),(2x^3-3x^2-120x,,,-5lexlt4),(2x^3-3x^2-36x+10...

    Text Solution

    |

  10. Let f be a twice differentiable function defined on R such that f(0) ...

    Text Solution

    |

  11. For which of the following curves, the line x + sqrt3 y = 2sqrt3 is th...

    Text Solution

    |

  12. The value of the integral, int1^3 [x^2-2x–2]dx , where [x] denotes the...

    Text Solution

    |

  13. Evaluate tan(1/4*Sin^-1(sqrt(63)/8))

    Text Solution

    |

  14. The negative of the statement ~p vv (p ^^ q) is

    Text Solution

    |

  15. A curve y=ax^2+bx+c passing through the point (1,2) has slope of tange...

    Text Solution

    |

  16. The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :

    Text Solution

    |

  17. Given y=y(x)passing through (1,2) such that xdy/dx +y = bx^4 then find...

    Text Solution

    |

  18. f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int0^(2)f(x...

    Text Solution

    |

  19. If A is symmetric matrix and B is skew symmetric matrix of order 3xx3,...

    Text Solution

    |

  20. Let a, b, c be in arithmetic progression. Let the centroid of the tri...

    Text Solution

    |