Home
Class 12
MATHS
If n ge 2 is a positive integer, then th...

If `n ge 2` is a positive integer, then the sum of the series `""^(n+1)C_2 + 2(""^2C_2+ ""3C_2 + ""4C_2 +...+ ""nC_2)` is:

A

`(n(n-1)(2n+1))/(6)`

B

`(n(n+1)(2n+1))/(6)`

C

`(n(2n+1)(3n+1))/(6)`

D

`(n(n+1)^2(n+2))/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series: \[ \binom{n+1}{2} + 2\left(\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \ldots + \binom{n}{2}\right) \] ### Step 1: Calculate \(\binom{n+1}{2}\) The binomial coefficient \(\binom{n+1}{2}\) is calculated as follows: \[ \binom{n+1}{2} = \frac{(n+1)n}{2} \] ### Step 2: Calculate the sum \(2\left(\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \ldots + \binom{n}{2}\right)\) The binomial coefficient \(\binom{r}{2}\) can be expressed as: \[ \binom{r}{2} = \frac{r(r-1)}{2} \] Thus, we need to sum this from \(r=2\) to \(n\): \[ \sum_{r=2}^{n} \binom{r}{2} = \sum_{r=2}^{n} \frac{r(r-1)}{2} \] ### Step 3: Factor out the \(\frac{1}{2}\) We can factor out \(\frac{1}{2}\) from the sum: \[ \sum_{r=2}^{n} \binom{r}{2} = \frac{1}{2} \sum_{r=2}^{n} r(r-1) \] ### Step 4: Simplify the sum \( \sum_{r=2}^{n} r(r-1) \) The expression \(r(r-1)\) can be rewritten as \(r^2 - r\). Thus, we can split the sum: \[ \sum_{r=2}^{n} r(r-1) = \sum_{r=2}^{n} r^2 - \sum_{r=2}^{n} r \] ### Step 5: Use formulas for the sums Using the formulas for the sums of the first \(n\) integers and the first \(n\) squares: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] We can calculate: \[ \sum_{r=2}^{n} r = \frac{n(n+1)}{2} - 1 \] \[ \sum_{r=2}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} - 1 \] ### Step 6: Substitute back into the sum Now we substitute these back into our expression: \[ \sum_{r=2}^{n} r(r-1) = \left(\frac{n(n+1)(2n+1)}{6} - 1\right) - \left(\frac{n(n+1)}{2} - 1\right) \] ### Step 7: Combine and simplify After simplification, we combine the results and multiply by 2: \[ 2\left(\sum_{r=2}^{n} \binom{r}{2}\right) = 2 \cdot \frac{1}{2} \left(\sum_{r=2}^{n} r(r-1)\right) = \sum_{r=2}^{n} r(r-1) \] ### Step 8: Final expression Now, we can combine everything: \[ \binom{n+1}{2} + 2\left(\sum_{r=2}^{n} \binom{r}{2}\right) = \frac{(n+1)n}{2} + \sum_{r=2}^{n} r(r-1) \] ### Conclusion The final result can be expressed in a simplified form, and we can conclude the solution.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If n is odd, then sum of the series C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(2)^(3)+…..+(-1)^(n)C_(n)^(2) is

If n is a positive integer,then nC_(1)+nC_(2)+...+nC_(n)=2^(n)-1

The sum of the series 1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n) is equal to

Find the sum of ( n + 1 ) terms of the following series 2 C_ 0 − 3 C_ 1 + 4 C_ 2 − 5 C_ 3 + ... ...

Find the sum : ""^(2n+1)C_0+""^(2n+1)C_1+""^(2n+1)C_2+...+""^(2n+1)C_n .

Find the sum : 1/2*""^(n)C_0+""^(n)C_1+2*""^(n)C_2+2^2*""^nC_3+...+2^(n-1)*""^(n)C_n .

If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is

If nge2 , ^(n+1)C_(2)+2(.^2C_(2)+^(3)C_(2)+^(4)C_(2)+...+^(n)C_(2))=

For all positive integers n, show that ^2nC_(n)+^(2n)C_(n-1)=(1)/(2)(^(2n+2)C_(n+1))

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-A
  1. If P is a point on the parabola y = x^2+ 4 which is closest to the str...

    Text Solution

    |

  2. The angle of elevation of a jet plane from a point A on the ground is...

    Text Solution

    |

  3. If n ge 2 is a positive integer, then the sum of the series ""^(n+1)C...

    Text Solution

    |

  4. Let f(x)={(-55x,,,xlt-5),(2x^3-3x^2-120x,,,-5lexlt4),(2x^3-3x^2-36x+10...

    Text Solution

    |

  5. Let f be a twice differentiable function defined on R such that f(0) ...

    Text Solution

    |

  6. For which of the following curves, the line x + sqrt3 y = 2sqrt3 is th...

    Text Solution

    |

  7. The value of the integral, int1^3 [x^2-2x–2]dx , where [x] denotes the...

    Text Solution

    |

  8. Evaluate tan(1/4*Sin^-1(sqrt(63)/8))

    Text Solution

    |

  9. The negative of the statement ~p vv (p ^^ q) is

    Text Solution

    |

  10. A curve y=ax^2+bx+c passing through the point (1,2) has slope of tange...

    Text Solution

    |

  11. The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :

    Text Solution

    |

  12. Given y=y(x)passing through (1,2) such that xdy/dx +y = bx^4 then find...

    Text Solution

    |

  13. f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int0^(2)f(x...

    Text Solution

    |

  14. If A is symmetric matrix and B is skew symmetric matrix of order 3xx3,...

    Text Solution

    |

  15. Let a, b, c be in arithmetic progression. Let the centroid of the tri...

    Text Solution

    |

  16. For the system of linear equations : x - 2y = 1, x - y + kz = -2, k...

    Text Solution

    |

  17. The probability that two randomly selected subsets of the set {1, 2, ...

    Text Solution

    |

  18. Let hati+yhatj+zhatk and xhati-hatj+hatk are parallel then unit vector...

    Text Solution

    |

  19. Let A = {1,2,3,…..10} and f:ArarrA be defined as f(k)={{:(k+1," if k i...

    Text Solution

    |

  20. Let f:RrarrR be defined as f(x)={{:(2sin(-(pix)/2)",",if xlt-1),(|ax^2...

    Text Solution

    |