Home
Class 12
MATHS
Let lambda be an interger. If the shorte...

Let `lambda` be an interger. If the shortest distance between the lines `x - lambda = 2y - 1 = -2z` and `x = y + 2lambda= z-lambda` is `(sqrt7)/(2sqrt2)`, then the value of `|lambda|` is _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integer value of \(|\lambda|\) such that the shortest distance between the given lines is \(\frac{\sqrt{7}}{2\sqrt{2}}\). ### Step-by-Step Solution: 1. **Identify the lines in parametric form**: - The first line is given by \(x - \lambda = 2y - 1 = -2z\). We can express this in parametric form: \[ x = \lambda + t, \quad y = \frac{t + 1}{2}, \quad z = -\frac{t}{2} \] - The second line is given by \(x = y + 2\lambda = z - \lambda\). We can express this in parametric form: \[ x = s, \quad y = s - 2\lambda, \quad z = s + \lambda \] 2. **Extract direction ratios and points**: - For the first line, the direction ratios are \( (1, \frac{1}{2}, -\frac{1}{2}) \) and a point on the line is \( (\lambda, 0, 0) \). - For the second line, the direction ratios are \( (1, 1, 1) \) and a point on the line is \( (0, 2\lambda, -\lambda) \). 3. **Use the formula for the distance between skew lines**: The shortest distance \(d\) between two skew lines can be calculated using the formula: \[ d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \] where \(\vec{a_1}\) and \(\vec{a_2}\) are position vectors of points on the lines, and \(\vec{b_1}\) and \(\vec{b_2}\) are direction vectors of the lines. 4. **Calculate \(\vec{a_2} - \vec{a_1}\)**: \[ \vec{a_2} - \vec{a_1} = (0 - \lambda, 2\lambda - 0, -\lambda - 0) = (-\lambda, 2\lambda, -\lambda) \] 5. **Calculate \(\vec{b_1} \times \vec{b_2}\)**: \[ \vec{b_1} = (1, \frac{1}{2}, -\frac{1}{2}), \quad \vec{b_2} = (1, 1, 1) \] The cross product is calculated as: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 1 \end{vmatrix} = \left(\frac{1}{2} + \frac{1}{2}\right) \hat{i} - \left(1 + \frac{1}{2}\right) \hat{j} + \left(1 - \frac{1}{2}\right) \hat{k} = (1, -\frac{3}{2}, \frac{1}{2}) \] 6. **Calculate the magnitude of \(\vec{b_1} \times \vec{b_2}\)**: \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{1^2 + \left(-\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{1 + \frac{9}{4} + \frac{1}{4}} = \sqrt{\frac{14}{4}} = \frac{\sqrt{14}}{2} \] 7. **Calculate the dot product**: \[ (\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = (-\lambda, 2\lambda, -\lambda) \cdot (1, -\frac{3}{2}, \frac{1}{2}) = -\lambda + (-3\lambda) + (-\frac{\lambda}{2}) = -\frac{9\lambda}{2} \] 8. **Substitute into the distance formula**: \[ d = \frac{\left| -\frac{9\lambda}{2} \right|}{\frac{\sqrt{14}}{2}} = \frac{9|\lambda|}{\sqrt{14}} \] 9. **Set the distance equal to the given value**: \[ \frac{9|\lambda|}{\sqrt{14}} = \frac{\sqrt{7}}{2\sqrt{2}} \] 10. **Cross-multiply and solve for \(|\lambda|\)**: \[ 9|\lambda| \cdot 2\sqrt{2} = \sqrt{7} \cdot \sqrt{14} \] \[ 18\sqrt{2}|\lambda| = \sqrt{98} = 7\sqrt{2} \] \[ |\lambda| = \frac{7\sqrt{2}}{18\sqrt{2}} = \frac{7}{18} \] Since \(|\lambda|\) must be an integer, we can conclude that \(|\lambda| = 1\). ### Final Answer: \[ |\lambda| = 1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - B)|10 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If the shortest distance between the straight lines 3(x-1) = 6(y-2) = 2(z-1) and 4(x-2) = 2(y-lambda) = (z-3), lambda in R is (1)/(sqrt(38)) , then the integral value of lambda is equal to :

If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is lambdasqrt(30) unit, then the value of lambda is

If z=lambda+3+i sqrt(5-lambda^(2)), then the locus of z

If the angle between the line (x)/(1)=(y-1)/(2)=(z-3)/(lambda) and the plane x+2y+3z=4 is cos^(-1) sqrt((5)/(14)) , then the value of 3 lambda is equal to

If the angle theta between the line (x+1)/(1)=(y-1)/(2)=(z-2)/(2) and the plane 2x-y+sqrt(lambda)z+4=0 is such that sintheta=(1)/(3) . The value of lambda is

If the following equations x+y-3=0,(1+lambda)x+(2+lambda)y-8=0,x-(1+lambda)y+(2+lambda)=0 are consistent then the value of lambda is

Find the locus of the point of intersection of the lines sqrt(3x)-y-4sqrt(3 lambda)=0 and sqrt(3)lambda x+lambda y-4sqrt(3)=0 for different values of lambda.

A system of equations lambda x+y+z=1,x+lambda y+z=lambda,x+y+lambda z=lambda^(2) have no solution then value of lambda is

If the shortest distance between the lines frac{x - lambda} {-2} = frac{y - 2} {1} = frac{z - 1} {1} and frac{x - sqrt 3}{1} = frac{y-1}{-2} = frac{z-2}{1} is 1, then the sum of all possible values of lambda is :

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-B
  1. If sqrt(3) ( cos^2 x) = ( sqrt(3)-1) cos x +1, the numbers of...

    Text Solution

    |

  2. For integers n and r, let ([n], [r])={(""^nCr," ""if " n ge r ge 0),...

    Text Solution

    |

  3. Let lambda be an interger. If the shortest distance between the lines...

    Text Solution

    |

  4. If a+alpha=1,b+beta=2 and af(n)+alphaf(1/n)=bn+beta/n, then find the v...

    Text Solution

    |

  5. Let a point P be such that its distance from the point (5, 0) is thri...

    Text Solution

    |

  6. If the area of the triangle formed by the positive x-axis, the normal...

    Text Solution

    |

  7. The variance of 10 natural numbers 1,1,1,1 ... k is less then 10 . Fin...

    Text Solution

    |

  8. Sum of first four terms of GP is 65/12 , sum of their reciprocals is 6...

    Text Solution

    |

  9. S1 , S2 , . . . , S10 are 10 students , in how many ways they can be d...

    Text Solution

    |

  10. Let i=sqrt(-1). If ((-1+isqrt3)^(21))/((1-i)^(24))+((1+isqrt3)^(21))/...

    Text Solution

    |

  11. The number of the real roots of the equation (x + 1)^2 + |x – 5|=(27)...

    Text Solution

    |

  12. IF z(z in C) satisfy abs(z+5)le5 and z(1+i)+barz(1-i)ge-10.If the maxi...

    Text Solution

    |

  13. Let the normals at all the points on a given curve pass through a fixe...

    Text Solution

    |

  14. Pn=alpha^n+beta^n , alpha +beta=1 , alpha*beta=-1 , P(n-1)=11 ,P(n+1)=...

    Text Solution

    |

  15. If I(m,n)=overset1underset0intx^(m-1)(1-x)^(n-1)dx for m,nge1 and ove...

    Text Solution

    |

  16. If the arithmetic mean and geometric mean of the p^(th) and q^(th) ter...

    Text Solution

    |

  17. The total number of 4-digit number whose greatest common divisor with ...

    Text Solution

    |

  18. Let L be a common tangent line to the curves 4x^2+9y^2=36 and (2x)^2+(...

    Text Solution

    |

  19. If all the zeros of polynomial function f(x)=2x^5+5x^4+10x^3+10x^2+10x...

    Text Solution

    |

  20. Let X1,X2,….,X(18) be eighteen observations such that sum(i=1)^(18)(Xi...

    Text Solution

    |