Home
Class 12
MATHS
"cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)] i...

`"cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)]` is equal to

A

`56/33`

B

`65/56`

C

`65/33`

D

`75/56`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \csc[2 \cot^{-1}(5) + \cos^{-1}(\frac{4}{5})] \), we will follow these steps: ### Step 1: Let \( \theta = \cot^{-1}(5) \) From the definition of cotangent, we know that: \[ \cot(\theta) = 5 \implies \tan(\theta) = \frac{1}{5} \] This can be represented in a right triangle where the adjacent side is 5 and the opposite side is 1. ### Step 2: Find the hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \] ### Step 3: Find \( \sin(\theta) \) and \( \cos(\theta) \) Now we can find: \[ \sin(\theta) = \frac{1}{\sqrt{26}}, \quad \cos(\theta) = \frac{5}{\sqrt{26}} \] ### Step 4: Calculate \( 2\theta \) Using the double angle formulas: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) = 2 \cdot \frac{1}{\sqrt{26}} \cdot \frac{5}{\sqrt{26}} = \frac{10}{26} = \frac{5}{13} \] \[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = \left(\frac{5}{\sqrt{26}}\right)^2 - \left(\frac{1}{\sqrt{26}}\right)^2 = \frac{25}{26} - \frac{1}{26} = \frac{24}{26} = \frac{12}{13} \] ### Step 5: Find \( \cos^{-1}(\frac{4}{5}) \) Let \( \phi = \cos^{-1}(\frac{4}{5}) \). Then: \[ \cos(\phi) = \frac{4}{5} \] Using the Pythagorean identity, we find: \[ \sin(\phi) = \sqrt{1 - \cos^2(\phi)} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 6: Combine angles Now we need to find \( \csc(2\theta + \phi) \): \[ \sin(2\theta + \phi) = \sin(2\theta)\cos(\phi) + \cos(2\theta)\sin(\phi) \] Substituting the values: \[ \sin(2\theta + \phi) = \left(\frac{5}{13}\right) \left(\frac{4}{5}\right) + \left(\frac{12}{13}\right) \left(\frac{3}{5}\right) \] Calculating each term: \[ = \frac{20}{65} + \frac{36}{65} = \frac{56}{65} \] ### Step 7: Find \( \csc(2\theta + \phi) \) Finally, we find: \[ \csc(2\theta + \phi) = \frac{1}{\sin(2\theta + \phi)} = \frac{1}{\frac{56}{65}} = \frac{65}{56} \] Thus, the final answer is: \[ \csc[2 \cot^{-1}(5) + \cos^{-1}(\frac{4}{5})] = \frac{65}{56} \] ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - B)|10 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|60 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

Cosec(2Cot^-1(5) + Cos^-1(4/5)) is equal to

cot^(-1)3+cosec^(-1)sqrt(5)=

cot(cosec ^(-1)(5/3) + tan^(-1)(2/3))=

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

sec^(2)(tan^(01)2)+csc^(2)(cot^(-1)3) is equal to 5 (b) 13 (c) 15 (d) 6

cot[csc^(-1)(5/3) + tan^(-1)(2/3)] = ....

If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)) , then x=

4(cot^(-1)3+csc^(-1)sqrt(5))=pi

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-(SECTION - A)
  1. If A is 3xx3 matrix and absA=4 . Operation R2 to 2R2 + 5R3 is applied ...

    Text Solution

    |

  2. int(e^(3loge(2x))+5e^(2loge(2x)))/(e^(4loge(x))+5e^(3loge(x))-7e^(2log...

    Text Solution

    |

  3. The shortest distance between the line x - y = 1 and the curve x^2 = 2...

    Text Solution

    |

  4. If z^2+alphaz+beta has one root 1-2i , then find the value of alpha-be...

    Text Solution

    |

  5. If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/...

    Text Solution

    |

  6. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  7. A plane passes through the points A(1,2,3), B(2,3,1) and C(2,4,2). If ...

    Text Solution

    |

  8. In a group of 400 people, 160 are smokers and non-vegetarian, 100 are ...

    Text Solution

    |

  9. "cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)] is equal to

    Text Solution

    |

  10. If the curve x^2 + 2y^2 = 2 intersects the line x + y = 1 at two point...

    Text Solution

    |

  11. The contrapositive of the statement "If you will work, you will earn m...

    Text Solution

    |

  12. Let f(x) = 5^x/(5^x +5) Then find the value of f(1/20) + f(2/20) + f...

    Text Solution

    |

  13. If for the matrix , A = [(1,-alpha),(alpha, beta)], A A^T = I2, then t...

    Text Solution

    |

  14. Minimum value at a^(ax) + a^(1-a x); a gt 0 and x in R, is

    Text Solution

    |

  15. I(n)=int(pi/4)^(pi/2)(cot^(n)x)dx , then :

    Text Solution

    |

  16. lim(Nrarroo) [1/n+n/(n+1)^2 +n/(n+2)^2 + . . . + n/(2n-1)^2]

    Text Solution

    |

  17. A number is selected from 4 digit numbers of the form 5n+2 where n be...

    Text Solution

    |

  18. If alpha and beta be root of x^2-6x-2=0 with alpha gt beta if an=alpha...

    Text Solution

    |

  19. Set A contain 3 elements , set B contain 5 elements , number of one-on...

    Text Solution

    |

  20. The following system of linear equations 2x + 3y + 2z = 9 3x + 2y ...

    Text Solution

    |