Home
Class 12
MATHS
If for the matrix , A = [(1,-alpha),(alp...

If for the matrix , `A = [(1,-alpha),(alpha, beta)], A A^T = I_2`, then the value of `alpha^4 + beta^4` is:

A

`4`

B

`2`

C

`3`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^4 + \beta^4 \) given that the matrix \( A = \begin{pmatrix} 1 & -\alpha \\ \alpha & \beta \end{pmatrix} \) satisfies the condition \( A A^T = I_2 \), where \( I_2 \) is the identity matrix of size 2. ### Step-by-step Solution: 1. **Find the Transpose of Matrix A**: The transpose of matrix \( A \) is given by: \[ A^T = \begin{pmatrix} 1 & \alpha \\ -\alpha & \beta \end{pmatrix} \] 2. **Multiply A and A^T**: Now we compute the product \( A A^T \): \[ A A^T = \begin{pmatrix} 1 & -\alpha \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ -\alpha & \beta \end{pmatrix} \] Performing the multiplication: - The element at (1,1) is \( 1 \cdot 1 + (-\alpha)(-\alpha) = 1 + \alpha^2 \) - The element at (1,2) is \( 1 \cdot \alpha + (-\alpha) \cdot \beta = \alpha - \alpha\beta \) - The element at (2,1) is \( \alpha \cdot 1 + \beta \cdot (-\alpha) = \alpha - \alpha\beta \) - The element at (2,2) is \( \alpha \cdot \alpha + \beta \cdot \beta = \alpha^2 + \beta^2 \) Thus, we have: \[ A A^T = \begin{pmatrix} 1 + \alpha^2 & \alpha - \alpha\beta \\ \alpha - \alpha\beta & \alpha^2 + \beta^2 \end{pmatrix} \] 3. **Set the Product Equal to the Identity Matrix**: Since \( A A^T = I_2 \), we equate it to the identity matrix: \[ \begin{pmatrix} 1 + \alpha^2 & \alpha - \alpha\beta \\ \alpha - \alpha\beta & \alpha^2 + \beta^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 4. **Formulate the Equations**: From the above equality, we can form the following equations: - From the (1,1) entry: \( 1 + \alpha^2 = 1 \) → \( \alpha^2 = 0 \) - From the (1,2) entry: \( \alpha - \alpha\beta = 0 \) - From the (2,2) entry: \( \alpha^2 + \beta^2 = 1 \) 5. **Solve for Alpha and Beta**: From \( \alpha^2 = 0 \), we find: \[ \alpha = 0 \] Substituting \( \alpha = 0 \) into \( \alpha - \alpha\beta = 0 \) gives no new information. Now substituting \( \alpha = 0 \) into \( \alpha^2 + \beta^2 = 1 \): \[ 0 + \beta^2 = 1 \implies \beta^2 = 1 \implies \beta = \pm 1 \] 6. **Calculate \( \alpha^4 + \beta^4 \)**: Now we compute \( \alpha^4 + \beta^4 \): \[ \alpha^4 + \beta^4 = 0^4 + 1^4 = 0 + 1 = 1 \] ### Final Answer: Thus, the value of \( \alpha^4 + \beta^4 \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - B)|10 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|60 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-alpha),(alpha,beta)] and A A^T=I .Then find the value of alpha and beta

If alpha and beta are connected by the relations alpha^(2)+alpha=1 and beta^(2)+beta=1, then the value of alpha^(2)+beta^(2) is eqal to

If alpha^(2)=5 alpha-3 beta^(2)=5 beta-3 then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha, beta are roots of x^(2)-2x-1=0 , then value of 5alpha^(4)+12beta^(3) is

If 4 sin 27^(@)=sqrt(alpha)-sqrt(beta) , then the value of (alpha+beta-alpha beta+2)^(4) must be

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is

If alpha and beta are the zeroes of x^2 - 8x + 1 , then the value of 1/alpha +1/beta - alpha beta is :

If the coefficient of x^(14) in the expansion of (4x^(2)+x+1)^(8) is alpha xx4^(beta), then the value of (alpha+beta) is equal to (where alpha and beta are relatively prime to each other and beta>1)

If sin(alpha+beta)=(4)/(5), sin(alpha-beta)=(5)/(13) , find the value of tan 2alpha :

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-(SECTION - A)
  1. If A is 3xx3 matrix and absA=4 . Operation R2 to 2R2 + 5R3 is applied ...

    Text Solution

    |

  2. int(e^(3loge(2x))+5e^(2loge(2x)))/(e^(4loge(x))+5e^(3loge(x))-7e^(2log...

    Text Solution

    |

  3. The shortest distance between the line x - y = 1 and the curve x^2 = 2...

    Text Solution

    |

  4. If z^2+alphaz+beta has one root 1-2i , then find the value of alpha-be...

    Text Solution

    |

  5. If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/...

    Text Solution

    |

  6. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  7. A plane passes through the points A(1,2,3), B(2,3,1) and C(2,4,2). If ...

    Text Solution

    |

  8. In a group of 400 people, 160 are smokers and non-vegetarian, 100 are ...

    Text Solution

    |

  9. "cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)] is equal to

    Text Solution

    |

  10. If the curve x^2 + 2y^2 = 2 intersects the line x + y = 1 at two point...

    Text Solution

    |

  11. The contrapositive of the statement "If you will work, you will earn m...

    Text Solution

    |

  12. Let f(x) = 5^x/(5^x +5) Then find the value of f(1/20) + f(2/20) + f...

    Text Solution

    |

  13. If for the matrix , A = [(1,-alpha),(alpha, beta)], A A^T = I2, then t...

    Text Solution

    |

  14. Minimum value at a^(ax) + a^(1-a x); a gt 0 and x in R, is

    Text Solution

    |

  15. I(n)=int(pi/4)^(pi/2)(cot^(n)x)dx , then :

    Text Solution

    |

  16. lim(Nrarroo) [1/n+n/(n+1)^2 +n/(n+2)^2 + . . . + n/(2n-1)^2]

    Text Solution

    |

  17. A number is selected from 4 digit numbers of the form 5n+2 where n be...

    Text Solution

    |

  18. If alpha and beta be root of x^2-6x-2=0 with alpha gt beta if an=alpha...

    Text Solution

    |

  19. Set A contain 3 elements , set B contain 5 elements , number of one-on...

    Text Solution

    |

  20. The following system of linear equations 2x + 3y + 2z = 9 3x + 2y ...

    Text Solution

    |