Home
Class 12
MATHS
I(n)=int(pi/4)^(pi/2)(cot^(n)x)dx , then...

`I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx` , then :

A

`1/(I_(2)+I_(4)),1/(I_(3)+I_(5)),1/(I_(4)+I_(6))` are in G.P.

B

`I_(2) + I_(4) , I_(3) + I_(5) , I_(4) + I_(6) ` are in A.P.

C

`I_(2) + I_(4) , (I_(3) + I_(5))^2 , I_(4) + I_(6) ` are in G.P.

D

`1/(I_(2)+I_(4)),1/(I_(3)+I_(5)),1/(I_(4)+I_(6))` are in A.P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x \, dx \), we can use the properties of integrals and some relationships between different \( I_n \) values. ### Step 1: Establish the relationship between \( I_n \) and \( I_{n-2} \) We can express \( I_n \) in terms of \( I_{n-2} \) using integration by parts or a reduction formula. We can write: \[ I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \cdot \cot^2 x \, dx \] ### Step 2: Rewrite \( \cot^2 x \) Recall that \( \cot^2 x = \csc^2 x - 1 \). Therefore, we can split the integral: \[ I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \cdot (\csc^2 x - 1) \, dx \] This gives us: \[ I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \cdot \csc^2 x \, dx - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \, dx \] ### Step 3: Define the integrals Let \( I_{n-2} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \, dx \) and \( I_{n} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x \, dx \). Thus, we have: \[ I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^{n-2} x \cdot \csc^2 x \, dx - I_{n-2} \] ### Step 4: Evaluate the first integral Using the substitution \( t = \cot x \), we have \( dt = -\csc^2 x \, dx \). The limits change as follows: - When \( x = \frac{\pi}{4} \), \( t = 1 \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we can rewrite the integral: \[ I_n = \int_{1}^{0} t^{n-2} (-dt) - I_{n-2} = \int_{0}^{1} t^{n-2} \, dt - I_{n-2} \] Calculating the integral: \[ \int_{0}^{1} t^{n-2} \, dt = \frac{1}{n-1} \] So we have: \[ I_n = \frac{1}{n-1} - I_{n-2} \] ### Step 5: Establish a recurrence relation Rearranging gives us: \[ I_n + I_{n-2} = \frac{1}{n-1} \] ### Step 6: Use the recurrence relation Using this recurrence relation, we can find specific values: 1. For \( n = 2 \): \[ I_2 + I_0 = \frac{1}{1} \implies I_2 + I_0 = 1 \] 2. For \( n = 4 \): \[ I_4 + I_2 = \frac{1}{3} \] 3. For \( n = 3 \): \[ I_3 + I_1 = \frac{1}{2} \] 4. For \( n = 5 \): \[ I_5 + I_3 = \frac{1}{4} \] 5. For \( n = 6 \): \[ I_6 + I_4 = \frac{1}{5} \] ### Conclusion From these equations, we can establish relationships between the integrals \( I_n \) and find specific values. The relationships show that \( I_2, I_4, I_3, I_5, I_6 \) are in arithmetic progression or geometric progression based on the derived equations.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - B)|10 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|60 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(pi//2)cot^(2)x dx =

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the vlau of (I_(n+1)-I_(-1)) is,

If I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1) , then I_n+I_(n+2)= (A) 1/(n-1) (B) 1/(n+1) (C) -1/(n+1) (D) 1/n-1

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

I_(n) =int_(pi //4)^(pi // 2) Cot^nx*dx Find relation between I_2+I_4 , I_3+I_5 , I_4+I_6 ,

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-(SECTION - A)
  1. If A is 3xx3 matrix and absA=4 . Operation R2 to 2R2 + 5R3 is applied ...

    Text Solution

    |

  2. int(e^(3loge(2x))+5e^(2loge(2x)))/(e^(4loge(x))+5e^(3loge(x))-7e^(2log...

    Text Solution

    |

  3. The shortest distance between the line x - y = 1 and the curve x^2 = 2...

    Text Solution

    |

  4. If z^2+alphaz+beta has one root 1-2i , then find the value of alpha-be...

    Text Solution

    |

  5. If a hyperbola passes through the focus of the ellipse x^(2)/25+y^(2)/...

    Text Solution

    |

  6. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  7. A plane passes through the points A(1,2,3), B(2,3,1) and C(2,4,2). If ...

    Text Solution

    |

  8. In a group of 400 people, 160 are smokers and non-vegetarian, 100 are ...

    Text Solution

    |

  9. "cosec"[2 cot^(-1)(5) + cos^(-1)(4/5)] is equal to

    Text Solution

    |

  10. If the curve x^2 + 2y^2 = 2 intersects the line x + y = 1 at two point...

    Text Solution

    |

  11. The contrapositive of the statement "If you will work, you will earn m...

    Text Solution

    |

  12. Let f(x) = 5^x/(5^x +5) Then find the value of f(1/20) + f(2/20) + f...

    Text Solution

    |

  13. If for the matrix , A = [(1,-alpha),(alpha, beta)], A A^T = I2, then t...

    Text Solution

    |

  14. Minimum value at a^(ax) + a^(1-a x); a gt 0 and x in R, is

    Text Solution

    |

  15. I(n)=int(pi/4)^(pi/2)(cot^(n)x)dx , then :

    Text Solution

    |

  16. lim(Nrarroo) [1/n+n/(n+1)^2 +n/(n+2)^2 + . . . + n/(2n-1)^2]

    Text Solution

    |

  17. A number is selected from 4 digit numbers of the form 5n+2 where n be...

    Text Solution

    |

  18. If alpha and beta be root of x^2-6x-2=0 with alpha gt beta if an=alpha...

    Text Solution

    |

  19. Set A contain 3 elements , set B contain 5 elements , number of one-on...

    Text Solution

    |

  20. The following system of linear equations 2x + 3y + 2z = 9 3x + 2y ...

    Text Solution

    |