Home
Class 12
MATHS
Let veca= hati+alpha hatj+3hatk and vecb...

Let `veca= hati+alpha hatj+3hatk and vecb = 3hati - alpha hatj+hatk`. If the area of the parallelogram whose adjacent sides are represented by the vectors `veca and vecb` is `8sqrt3` square , then `veca.vecb` is equal to _______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the dot product \(\vec{a} \cdot \vec{b}\) given the vectors \(\vec{a} = \hat{i} + \alpha \hat{j} + 3\hat{k}\) and \(\vec{b} = 3\hat{i} - \alpha \hat{j} + \hat{k}\), and the area of the parallelogram formed by these vectors is \(8\sqrt{3}\). ### Step 1: Calculate the cross product \(\vec{a} \times \vec{b}\) The area of the parallelogram formed by vectors \(\vec{a}\) and \(\vec{b}\) is given by the magnitude of their cross product: \[ \text{Area} = |\vec{a} \times \vec{b}| \] We can find \(\vec{a} \times \vec{b}\) using the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of \(\vec{a}\) and \(\vec{b}\). \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & \alpha & 3 \\ 3 & -\alpha & 1 \end{vmatrix} \] ### Step 2: Calculate the determinant Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} \alpha & 3 \\ -\alpha & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & \alpha \\ 3 & -\alpha \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} \alpha & 3 \\ -\alpha & 1 \end{vmatrix} = \alpha(1) - 3(-\alpha) = \alpha + 3\alpha = 4\alpha\) 2. \(\begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = 1(1) - 3(3) = 1 - 9 = -8\) 3. \(\begin{vmatrix} 1 & \alpha \\ 3 & -\alpha \end{vmatrix} = 1(-\alpha) - 3(\alpha) = -\alpha - 3\alpha = -4\alpha\) Putting it all together: \[ \vec{a} \times \vec{b} = \hat{i}(4\alpha) + \hat{j}(8) + \hat{k}(-4\alpha) = 4\alpha \hat{i} + 8 \hat{j} - 4\alpha \hat{k} \] ### Step 3: Find the magnitude of the cross product Now, we find the magnitude: \[ |\vec{a} \times \vec{b}| = \sqrt{(4\alpha)^2 + 8^2 + (-4\alpha)^2} = \sqrt{16\alpha^2 + 64 + 16\alpha^2} = \sqrt{32\alpha^2 + 64} \] ### Step 4: Set the magnitude equal to the area We know the area is \(8\sqrt{3}\): \[ \sqrt{32\alpha^2 + 64} = 8\sqrt{3} \] Squaring both sides: \[ 32\alpha^2 + 64 = 192 \] \[ 32\alpha^2 = 128 \quad \Rightarrow \quad \alpha^2 = 4 \quad \Rightarrow \quad \alpha = 2 \text{ or } -2 \] ### Step 5: Calculate the dot product \(\vec{a} \cdot \vec{b}\) Now we substitute \(\alpha = 2\) into \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ \vec{b} = 3\hat{i} - 2\hat{j} + \hat{k} \] Now calculate the dot product: \[ \vec{a} \cdot \vec{b} = (1)(3) + (2)(-2) + (3)(1) = 3 - 4 + 3 = 2 \] Thus, the value of \(\vec{a} \cdot \vec{b}\) is \(2\). ### Final Answer: \(\vec{a} \cdot \vec{b} = 2\) ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION A)|60 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION B)|30 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

Find the area of the parallelogram whsoe adjacent sides are given by the vectors veca=3hati+hatj+4hatk and vecb=hati-hatj+hatk

Calculate the area of a parallelogram whose adjacent sides are formed by the vectors vecA=hati-3hatj+hatk and vecB=2hati-hatj+3hatk .

Find the area of the prallelogram whose adjacent sides are veca=hati+2hatj+3hatk and vecb=3hati-2hatj+hatk .

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of veca on vecb

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca = (hati - 2hatj -3hatk) and vecb = (2hati + 4hatj +9 hatk) then find a unit vector parallel to (veca + vecb) .

Angle between diagonals of a parallelogram whose side are represented by veca=2hati+hatj+hatk and vecb=hati-hatj-hatk