Home
Class 12
MATHS
Let f(x)= sin^(-1)x and g(x) = (x^2-x-2)...

Let `f(x)= sin^(-1)x and g(x) = (x^2-x-2)/(2x^2-x-6)`. If `g(2)=underset(xrarr2)(lim)g(x)` then the domain of the function fog is

A

`(-oo,-2]uu[-3/2,oo)`

B

`(-oo,-2]uu[-1,oo)`

C

`(-oo,-2]uu[-4/3,oo)`

D

`(-oo,-1]uu[2,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(g(x)) \), we need to follow these steps: ### Step 1: Define the Functions We have: - \( f(x) = \sin^{-1}(x) \) - \( g(x) = \frac{x^2 - x - 2}{2x^2 - x - 6} \) ### Step 2: Find \( g(2) \) and \( \lim_{x \to 2} g(x) \) First, we need to evaluate \( g(2) \): \[ g(2) = \frac{2^2 - 2 - 2}{2(2^2) - 2 - 6} = \frac{4 - 2 - 2}{8 - 2 - 6} = \frac{0}{0} \] Since this results in an indeterminate form, we will find \( \lim_{x \to 2} g(x) \). ### Step 3: Factor \( g(x) \) We can factor the numerator and denominator of \( g(x) \): - The numerator \( x^2 - x - 2 \) factors to \( (x - 2)(x + 1) \). - The denominator \( 2x^2 - x - 6 \) factors to \( (2x + 3)(x - 2) \). Thus, we can rewrite \( g(x) \): \[ g(x) = \frac{(x - 2)(x + 1)}{(2x + 3)(x - 2)} \] For \( x \neq 2 \), we can simplify this to: \[ g(x) = \frac{x + 1}{2x + 3} \] ### Step 4: Find \( \lim_{x \to 2} g(x) \) Now, we can compute the limit: \[ \lim_{x \to 2} g(x) = \lim_{x \to 2} \frac{x + 1}{2x + 3} = \frac{2 + 1}{2(2) + 3} = \frac{3}{7} \] Thus, \( g(2) = \frac{3}{7} \). ### Step 5: Determine the Domain of \( f(g(x)) \) The function \( f(g(x)) \) is defined when \( g(x) \) is in the range of \( f \), which is \( [-1, 1] \): \[ -1 \leq g(x) \leq 1 \] Substituting \( g(x) \): \[ -1 \leq \frac{x + 1}{2x + 3} \leq 1 \] ### Step 6: Solve the Inequalities 1. **For the left inequality**: \[ -1 \leq \frac{x + 1}{2x + 3} \] Cross-multiplying (considering \( 2x + 3 > 0 \) for \( x > -\frac{3}{2} \)): \[ - (2x + 3) \leq x + 1 \implies -2x - 3 \leq x + 1 \implies -3 - 1 \leq 3x \implies -4 \leq 3x \implies x \geq -\frac{4}{3} \] 2. **For the right inequality**: \[ \frac{x + 1}{2x + 3} \leq 1 \] Cross-multiplying: \[ x + 1 \leq 2x + 3 \implies 1 - 3 \leq 2x - x \implies -2 \leq x \implies x \geq -2 \] ### Step 7: Combine the Results The combined inequalities are: \[ x \geq -\frac{4}{3} \quad \text{and} \quad x \geq -2 \] Thus, the domain of \( f(g(x)) \) is: \[ x \geq -\frac{4}{3} \] ### Final Domain The domain of the function \( f(g(x)) \) is: \[ \boxed{[-\frac{4}{3}, \infty)} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise (SECTION - A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematic section B|10 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If f(x) = Sin^-1 x and g(x)=(x^2-x-2)/(2x^2-x-6) then domain of fog(x) is

If f(x)=sin^(-l)x and g(x)=sqrt(x), the domain of composite function fog(x) is

Let fog (x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

Let f:R-{-1/2}toR and g:R-{-5/2}toR be defined as f(x)=(2x+3)/(2x+1) g(x)=(abs(x)+1)/(2x+5) then the domain of the function f(g(x) is:

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

If f(x)=(x+2)/(x+1) and g(x)=(x-2)/(x), then find the domain of fog(x)

If f(x)=sqrt(|3^(x)-3^(1)|-2) and g(x)=tan pi x, then domain of fog(x) , is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2021-SECTION-A
  1. Let hati+yhatj+zhatk and xhati-hatj+hatk are parallel then unit vector...

    Text Solution

    |

  2. Let A = {1,2,3,…..10} and f:ArarrA be defined as f(k)={{:(k+1," if k i...

    Text Solution

    |

  3. Let f:RrarrR be defined as f(x)={{:(2sin(-(pix)/2)",",if xlt-1),(|ax^2...

    Text Solution

    |

  4. f(x)=int1^x lnt/(1+t) dt , f(e)+f(1/e)=

    Text Solution

    |

  5. The prime factorization of a number 'n' is given as n=2^x xx 3^y xx 5^...

    Text Solution

    |

  6. Let f(x)= sin^(-1)x and g(x) = (x^2-x-2)/(2x^2-x-6). If g(2)=underset(...

    Text Solution

    |

  7. The triangle of maximum area that can be inscribed in a given circle o...

    Text Solution

    |

  8. Let L be a line obtained from the intersection of two planes x+2y+z = ...

    Text Solution

    |

  9. Let F1(A,B,C)=(A^^~B)vv[~C^^(AvvB)]vv~A and F2(A,B)=(AvvB)vv(BrarrA) b...

    Text Solution

    |

  10. The slope of the tangent to curve is (xy^2+y)/x and it intersects the ...

    Text Solution

    |

  11. Locus of the mid-point of the line joining (3,2) and point on (x^2+y^2...

    Text Solution

    |

  12. Consider the following system of equations : {:(x+2y-3z=a),(2x+6y-11...

    Text Solution

    |

  13. If 0 lt a,b lt 1 and tan^(-1)a+tan^(-1) b = pi/4, then the value of ...

    Text Solution

    |

  14. The sum of the series sum(n=1)^oo(n^2+6n+10)/((2n+1)!) is equal to

    Text Solution

    |

  15. f(x) is differentiable function at x=a such that f'(a)=2 , f(a)=4. Fin...

    Text Solution

    |

  16. Let A(1,4) and B(1,-5) be two points let p be the point on (x-1)^2+(y-...

    Text Solution

    |

  17. Mirror image of point (1,3,5) w.r.t plane 4x-5y+2z=8 is (alpha,beta,ga...

    Text Solution

    |

  18. f(x)=int0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in...

    Text Solution

    |

  19. If A1 is area between the curve y=Sinx , y=Cosx and y-axis in 1st quad...

    Text Solution

    |

  20. A seven digit number is formed using digits 3,3,4,4,4,5,5. The probabi...

    Text Solution

    |