Home
Class 12
PHYSICS
Two vectors are given by vec(A)= hat(i) ...

Two vectors are given by `vec(A)= hat(i) + 2hat(j) + 2 hat(k) and vec(B)= 3 hat(i) + 6hat(j) + 2hat(k)`. Another vector `vec(C )` has the same magnitude as `vec(B)` but has the same direction as `vec(A)`. Then which of the following vectors represents `vec(C )`?

A

`(7)/(3) (hat(i) + 2hat(j) + 2hat(k))`

B

`(3)/(7) (hat(i) -2hat(j) + 2hat(k))`

C

`(7)/(9) (hat(i)-2hat(j) + 2hat(k))`

D

`(9)/(7) (hat(i) + 2hat(j) + 2hat(k))`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2013

    WB JEE PREVIOUS YEAR PAPER|Exercise Category-II|10 Videos
  • QUESTION PAPER 2013

    WB JEE PREVIOUS YEAR PAPER|Exercise Category-III|5 Videos
  • QUESTION PAPER 2012

    WB JEE PREVIOUS YEAR PAPER|Exercise Subject: Physics|38 Videos
  • QUESTION PAPER 2014

    WB JEE PREVIOUS YEAR PAPER|Exercise PHYSICS (CATEGORY III)|3 Videos

Similar Questions

Explore conceptually related problems

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec(OA)=hat(i)-2hat(k) " and " vec(OB)=3hat(i)-2hat(j) then the direction cosines of the vector vec(AB) are -

vec(A) and vec(B) are two vectors given by vec(A) = 2hat(i) + 3hat(j) and vec(B)= hat(i) + hat(j) . The magnitude of the component of vec(A) along vec(B) is

Let vec(a) = hat(i) + hat(j) - 3 hat(k) and vec(b) = 2 hat(i) + hat(j) + hat(k) Statement - I: Vectors vec(a) and vec(b) are perpendicular to each other Statement - II: vec(a) . vec(b) = 0

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

If vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec(b) = hat (i) + hat (j) - hat (k) and |vec (a) xx vec(b)| = sqrt(13 m ) then the value of m is -

If vec(a) = 2 hat (i) - hat (j) + 3 hat (k) and vec(b) = 3 hat (i) + hat (j) - 2 hat (k) , find the angle between the vectors (vec(a) + vec(b)) and (vec(a)-vec(b))

If vec(a) = hat (i) +hat (j) , vec (b) = hat(i) - hat(j) and vec(c ) = 5 hat (i) + 2 hat (j) + 3 hat(k) , find the value of [ vec(b)vec (c ) vec(a)]

If vec(a)=hat(i)+2hat(j)-hat(k) " and " vec(b)=3hat(i)+hat(j)-5hat(k) , find a unit vector in a direction parallel to vector (vec(a)-vec(b)) .

If vec(a) = 3 hat (i) + 4 hat (j) - hat(k) , vec(b) = hat(i) - 3 hat (j) + 4 hat (k) and vec (c ) = 5 hat (i) - 6 hat (j) + 4 hat (k) , find the vector vec (r ) which is perpendicular to both vec(a) and vec(b) and which satisfies the relation vec(r).vec(c ) = 91