Home
Class 12
MATHS
int0^pi x tanx / (sec x + cos x) dx = pi...

`int_0^pi x tanx / (sec x + cos x) dx = pi^2 / 4`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_ (0) ^ (pi) (x tan x) / (sec x cos ecx) = (pi ^ (2)) / (4)

int_(0)^( pi)x(tan x)/(sec x+cos x)dx=(pi^(2))/(4)

int_(0)^( pi)(x tan x)/(sec x+cos x)dx is (pi^(2))/(4)(b)(pi^(2))/(2)(c)(3 pi^(2))/(2) (d) (pi^(2))/(3)

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_0^(pi/3) (secxtanx)/(1+sec^2x)dx

int_0^(pi/2) sin^4x/(sin^4x+cos^4x) dx=

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

int_0^pi sin^4x cos^4x dx