Home
Class 12
MATHS
int0 ^ (pi/2) log(cosx) dx=...

`int_0 ^ (pi/2) log(cosx) dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log (cotx ) dx=

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

Evaluate int_0^(pi/2)sinx.log cosx dx

Consider is int_(0)^(pi//2) ln (sinx)dx equal to ? What is int_(0)^(pi//2) ln (cos x) dx equal to ?

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

int_0^(pi//2)log(tanx)dx

int_0^(pi/2) (Cosx - Sinx)dx

Evaluate the following: int_0^(pi/2) cosx/(cosx+sinx)dx