Home
Class 11
MATHS
If the equation cos^(2)((pi)/4(sinx+sqrt...

If the equation `cos^(2)((pi)/4(sinx+sqrt(2)cos^(2)x))-tan^(2)(x+(pi)/4tan^(2)x)=1` then x=

A

`2kpi-(pi)/4, k in Z`

B

`2kpi+(pi)/3, k in Z`

C

`2kpi +(pi)/4, k in Z`

D

`2k pi +(pi)/4, k inZ`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE-I MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|12 Videos
  • TRIGNOMETRIC EQUATIONS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE-II (Straight objectives Types Questions)|40 Videos
  • TRANSFORMATIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-I LEVEL-I Straight Objective Type Questions)|41 Videos
  • TRIGONOMERTIC RATIOS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|77 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation cos^(2) (x + (pi)/( 6)) + cos ^(2) x - 2 cos ( + (pi)/( 6)) co ""(pi)/( 6) = sin ^(2) (pi)/( 6) in interval ((-pi)/( 2), (pi)/( 2)) is _____

f(x)=(tanx)/(sqrt(1+tan^(2)x)) and f((pi)/(2)-)=a,f((pi)/(2)+)=b then

If tan^(-1)(a//x)+tan^(-1)(b//x)=pi//2 then x=

Consider the equation tan^(2)(cos sqrt(4pi^(2)-x^(2)))-4a tan (cos sqrt(4pi^(2)-x^(2)))+2+2a=0,a being a parameter. (Given tan1=1.56) If a=1/2 then the number of distinct real roots of the equation is

If cos^(2) x + cos^(4) x =1 then tan^(2) x + tan^(4) x=

The maximum value of cos^(2)(pi//4-x)+(sinx-cosx)^(2) is

The number of roots of the equation |sin x cos x| + sqrt(2 + tan^(2) x + cot ^(2) x) = sqrt(3), " where " x in [0, 4 pi] is

(sin x + cos x)^(2) + cos^(2)((pi)/(4) + x) in